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Abstract— Full diversity high-rate Space Time Block Codes
(STBCs) based on cyclotomic field extensions Q(ωl), where
ωl is the complex lth root of unity, can be decoded by
Lenstra-Lenstra-Lovász (LLL) lattice reduction-aided linear
equalization followed by appropriate zero forcing. LLL lattice
reduction-aided linear equalization enables lower complexity
decoding compared to sphere decoding, while resulting in a
performance loss. In this paper, we propose a new suboptimal
detection algorithm which exploits the algebraic structure of
this class of STBCs and applies LLL lattice reduction-based
detection multiple times on the received space-time symbol
to arrive at an estimate of the transmitted codeword matrix.
The decoding complexity is still significantly lower than sphere
decoding complexity. Using simulations, the proposed scheme is
shown to perform better than the conventional LLL reduction-
based scheme in terms of bit error rate. We also point out
that the computational effort for the multiple lattice reduction-
based scheme can be significantly reduced for codes over certain
numbers of transmit antennas.

I. INTRODUCTION

Full-rank and minimal-delay space time block codes

constructed using field extensions [1] offer flexibility

in design with respect to number of transmit antennas,

while providing advantages like information losslessness.

However, due to their non-orthogonal nature, they cannot

be decoded using simple receiver-side linear processing. We

have to resort to generic approaches like sphere decoding

[2] for maximum likelihood (ML) detection. Though sphere

decoding for such STBCs yields optimal error performance,

it is costly in terms of complexity [3]. It is interesting to

consider suboptimal alternatives such as linear equalization

aided by Lenstra-Lenstra-Lovász (LLL) lattice reduction [4],

which is computationally cheap and is proved to achieve full

receive diversity in multiple-input-multiple-output (MIMO)

systems [5]. The complexity of LLL reduction, unlike that

of sphere decoding, stays constant and is unaffected by

parameters like signal-to-noise ratio and constellation size.

LLL reduction-based decoding is a generic detection ap-

proach for the case of MIMO systems employing lattice sig-

nal constellations like QAM. We desire a decoding scheme

specific to the structure of STBCs derived from cyclotomic

field extensions, which can provide better error performance

than conventional LLL reduction based decoding while being

lower in complexity than sphere decoding. In the follow-

ing sections, we first describe the process of LLL lattice

reduction-aided detection for a MIMO system which uses

The authors are with the Department of Electrical Engineer-
ing, Indian Institute of Technology Madras, Chennai 600036, India.
{gadit,skrishna}@ee.iitm.ac.in

STBCs based on cyclotomic extensions. We then propose a

detection scheme that employs LLL lattice reduction-aided

detection multiple times to extract more information out

of the received symbol. Simulations for systems with 2, 3

and 4 transmit antennas show that this scheme provides an

advantage in terms of bit-error performance over single LLL

lattice reduction-aided decoding.

II. SYSTEM MODEL

We consider a MIMO-STBC system with n transmit and

m receive antennas, communicating over a Rayleigh flat

fading channel with additive white Gaussian noise (AWGN).

Data to be sent over the wireless link is divided into fixed-

length blocks. Each block is mapped to a corresponding

n×n complex space time codeword matrix X, whose entries

represent symbols derived from a QAM signal set used

by the transmitter. The codeword matrix X is transmitted

column-wise from the n transmit antennas, over n symbol

periods. We let an m × n matrix H denote the fading

wireless channel, with its entries as independent zero-mean

complex Gaussian random variables having variance 0.5

for the real and imaginary parts. An array of m receive

antennas captures the received m×n signal Y over n symbol

periods. The AWGN is represented by an m × n matrix W

with independent, circularly symmetric, zero-mean complex

Gaussian-distributed entries. The system equation is thus

Y = HX + W (1)

We restrict the matrix X to be associated with a space-time

block code derived from the nth cyclotomic field extension.

Such a code is obtained by the technique of embedding a

cyclotomic extension in a complex matrix ring, as described

in [1]. The form of such an n × n STBC C is given by

C = {f0In + f1M + f2M
2 + · · · + fn−1M

n−1 |

fi ∈ QAM, i = 0, . . . , n − 1} (2)

The matrix M in this equation has the structure

M =















0 0 · · · 0 ωn

1 0 · · · 0 0
0 1 · · · 0 0
...

...
... 0

...

0 0 · · · 1 0















(3)

where ωn = ej 2π

n and f0, . . . , fn−1 denote independent

complex QAM symbols which are essentially functions of



the input data block. Note that Mn = ωnIn, where In is the

identity matrix of size n.

For the setup described above, the maximum likelihood

detection rule takes the form

X̂ = arg max
X∈C

||Y − HX||F (4)

where X̂ is the maximum likelihood estimate for the trans-

mitted codeword matrix X.

III. LATTICE REDUCTION-AIDED ZERO FORCING

DETECTION

To effectively apply LLL Lattice Reduction-aided Zero

Forcing (LRZF) to our STBC, we first transform the STBC

transmission equation (1) to a real, vector form, as suggested

by [6]. The procedure consists of first vectorizing Y, X and

W and then appropriately separating the real and imaginary

matrix parts from the resulting equation. We arrive at the

equation

s = Gr + n (5)

where s and n are real 2mn × 1 vectors, G is a 2mn × 2n

real matrix and r is a 2n × 1 integer vector (lowercase

quantities denote vectors). The integer property of r is due

to the fact that the transmitters use a rectangular lattice

constellation (QAM in this case) which, after suitable

scaling, takes integer coordinates.

Conventional LLL lattice reduction-aided linear equal-

ization, as detailed in [7], first finds an equivalent lattice

generator matrix G̃ = GT (with T a unimodular integer

matrix) such that the columns of G̃ are ’roughly orthogonal’.

The Lenstra-Lenstra-Lovász criteria for near-orthogonality

were first specified in [4]. By introducing the integer vector

z = T−1r, we can write (5) as

s = Gr + n = GTT−1r + n = G̃z + n (6)

The LLL-reduced matrix G̃ is usually much better condi-

tioned than the original matrix G; we premultiply the above

equation by G̃+ - the pseudoinverse of G̃ - and round the

result sLRZF to the nearest integer vector:

sLRZF = G̃+s = z + G̃+n (7)

Multiplying the rounded result by T yields the LLL

reduction-aided estimate for r and hence an estimate for X.

This decoding procedure can be applied to any STBC which

uses transmit symbols from a lattice-based constellation. In

the next section, we utilize the algebraic structure of STBCs

based on cyclotomic extensions to devise a multiple LLL

reduction-based decoding scheme for such codes.

IV. PROPOSED DECODING SCHEME

For deriving our detection scheme based on multiple LLL

reduction, we rewrite the transmission-reception model (1)

for the case of STBCs derived from cyclotomic extensions

as

Y = H(f0In +f1M+f2M
2 + · · ·+fn−1M

n−1)+W (8)

where f0, . . . , fn−1 belong to QAM. Post-multiplying the

above equation throughout by M yields

YM = H(f0M + f1M
2 + f2M

3 + · · · + fn−1M
n) + WM

= H(ωnfn−1In + f0M + f1M
2 + f2M

3 + · · ·

+ fn−2M
n−1) + WM (9)

which is functionally similar to (8), with f0, f1, . . . , fn−1

replaced by ωnfn−1, f0, . . . , fn−2. We successively multi-

ply (8) by M2, . . . ,Mn−1 and appropriately rearrange in

ascending powers of M to get

YM2 = H(ωnfn−2In + ωnfn−1M + f0M
2 + f1M

3+

· · · + fn−3M
n−1) + WM2

YM3 = H(ωnfn−3In + ωnfn−2M + ωnfn−1M
2+

f0M
3 + · · · + fn−4M

n−1) + WM3

...
...

YMn−1 = H(ωnf1In + ωnf2M + ωnf3M
2 + ωnf4M

3+

· · · + f0M
n−1) + WMn−1 (10)

We note that MMH = MHM = In, hence M is a

unitary matrix and the products WMi, i = 1, . . . , n − 1
still retain AWGN properties. The scheme we propose is to

apply lattice reduction zero forcing detection independently

on each of the above n equations and derive n estimates

X̂i, i = 0, . . . , n − 1 for the transmitted codeword. If all

the obtained estimates agree (X̂0 = · · · = X̂n−1), we are

through and our final estimate is this common codeword.

Since each of the estimates Xi obtained by LLL reduction-

aided zero forcing is suboptimal, there is a possibility of the

estimates being different. If there is a discrepancy in the n

estimates, i.e. two of more estimates differ, then we pick the

most likely of the two estimates (simple resolution):

X̂ = arg min
i∈{0,...,n−1}

||Y − HX̂i||
2
F (11)

where || · ||F denotes the Frobenius matrix norm operation.

In effect, we perform n lattice reduction zero forcing

procedures and make a simple norm-based decision on the

results returned by these procedures, hoping to get a more

likely estimate of the transmitted codeword. To see in detail

how multiple estimates are obtained using LLL-based lattice

reduction zero forcing, note that lattice reduction involves

transforming (8) to the form of (5) as follows:

Y = HX + W

⇒ vec(Y) = H̃vec(X) + vec(W)

i.e. ỹ = H̃Kf + w̃

= G̃f + w̃ (12)

∴ ỹ′ = G̃′f ′ + w̃′ (13)

where f =
[

f0 f1 . . . fn−1

]T
, for the base case

of (8). The operation vec(·) stacks up the columns of a

matrix into a vector. K is a transform from the vector of



independent symbols f to the vector form of the space-time

codeword matrix X. For (9), according to the above

procedure, f =
[

ωnfn−1 f0 . . . fn−2

]T
. In this case,

the vector f is modified to
[

fn−1 f0 . . . fn−2

]T

- a cyclic shift of the original f vector - while suitably

modifying the matrix G̃ in (12) by multiplying its first

column by ωn. This ensures that the product G̃f remains

the same. The next step separates the real and imaginary

parts of (12), as described in [6], to yield (13) which is

of the form shown in (5). LLL-reduction and zero forcing

proceed subsequently to yield estimates for f0, f1, . . . , fn−1.

A similar method is followed for (10) corresponding to

multiplication by higher powers of M.

We make the important observation that in the case of

STBCs constructed using the cyclotomic field extension

Q(ω4) = Q(j), the codeword matrices are of the form

described in (3) with γ = ω4 = j. With the symbols

f0, f1, . . . , fn−1 all coming from a rectangular QAM

constellation (which is a subset of Q(j)), all the entries of

all codeword matrices are completely over QAM (instead

of rotated QAM symbols), whence we need to perform LLL

reduction only once. Hence, the matrix G̃ and the vector f

in (12) need no modification since f is completely over the

QAM signal set. A single LLL reduction for the matrix G̃

in (13) is enough to zero-force the set of equations (8), (9)

and (10). This strategy can be applied to codes derived from

the extension Q(j) for any 2k transmit antennas, using the

irreducibility of x2
k

− j over Q(j) as shown in [1].

As an alternative to choosing the estimate yielding

minimum distance as suggested by (11), we can perform

sphere decoding in the case of a discrepancy in the n LRZF

estimates (ML resolution). This produces an increase in

overall detection complexity compared to simple resolution

described above; however we can speed up the sphere

decoder significantly by giving it a search radius equal to

the minimum distance found in (11), a method known as

using the Babai estimate [8]. In this manner, we ensure

that at least one valid codeword is tested inside the

sphere, at the same time reducing the number of possible

candidates being tested. The error performance of the ML

resolution strategy helps to lower-bound the performance

of the scheme based on simple minimum-distance resolution.

A block diagram of the proposed decoder based on mul-

tiple LLL lattice reduction is shown in Figure 1.

V. RESULTS AND DISCUSSION

The bit-error performance of plain zero forcing (ZF),

lattice reduction-aided zero forcing (LRZF), multiple LRZF

with simple resolution, multiple LRZF with ML resolution

and ML (sphere) decoding methods applied to STBCs

based on cyclotomic extensions over a 16-QAM signal set,

for 2, 3 and 4 antennas, are shown in Figures 2, 3 and 4

respectively. It follows from the plots that as the number

of transmit (and receive) antennas increases, the scheme
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Fig. 1. Block diagram of proposed STBC decoder using multiple
LLL reduction

based on simple resolution (11) performs much better than

conventional lattice reduction-aided zero forcing and closely

approaches the ML resolution strategy in terms of error

performance.

For the case of the 2 × 2 code, the curves for multiple

LRZF detection (simple resolution and ML resolution)

are lower than that of LRZF by a fraction of a dB. The

difference in performance between the multiple decoding

and single decoding LRZF methods increases to about 0.5

dB for the 3 × 3 code at high SNR (≥ 20 dB), and 1 dB

for the 4 × 4 code, at moderate SNR (15 to 20 dB). The

intuitive understanding behind the increase in performance

of multiple lattice reduction is that there is more information

extracted from the received signal, thereby producing a

more likely estimate of the transmitted codeword. Also,

deviations from the optimal estimate for a single lattice

reduction decoder are better ’averaged out’ if multiple

reduction is followed.

It is instructive to note, from the presented simulation

results, that the slope of the LLL-based detection curves

tends to the slope of the ML detection curve with increasing

SNR. This helps verify the fact that LLL reduction based
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Fig. 2. Bit error performance comparison of decoding methods for
2× 2 STBC based on the cyclotomic field extension Q(ω4)
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Fig. 3. Bit error performance comparison of decoding methods for
3× 3 STBC based on the cyclotomic field extension Q(ω3)

detection achieves the full receive diversity in MIMO

systems [5].

In the performance graphs, we note that LLL reduction-

aided zero forcing performs worse than plain zero forcing in

the low SNR regime. The effect is also noted in the LRZF

detection performance graphs in [7]. This phenomenon is

due to the fact that lattice reduction-aided zero forcing, as

stated by (6) and (7), involves rounding to the integer vector

z = T−1r. Since integer rounding to the closest element

of T−1r is computationally nontrivial, we choose to first

round sLRZF to the nearest integer vector, apply T to it

and then round the result again to within the limits of the

QAM signal set being used, introducing a degradation in

performance at lower SNRs.
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Fig. 4. Bit error performance comparison of decoding methods for
4× 4 STBC based on the cyclotomic field extension Q(ω4)

From an architectural point of view, the proposed

multiple LLL lattice reduction strategy naturally lends itself

to parallel implementation; each lattice reduction based

decoder operates independent of the others. The observation

that using simple norm-based resolution (11) in conjunction

with multiple lattice reduction provides performance nearly

equal to using ML resolution suggests that one need not use

specialized hardware for sphere decoding in the presence

of already available lattice reduction-aided detectors.

Furthermore, complexity improvements to the basic LLL

reduction detector are possible, as suggested in [9].

VI. SUMMARY

We conclude that the detection scheme based on multiple

LLL reduction-aided zero forcing followed by simple norm-

based resolution, for STBCs based on cyclotomic extensions,

yields a performance gain over single LRZF detection.

Detection based on the simple resolution strategy yields error

performance very close to that of the ML resolution strategy.

The additional complexity of multiple LLL reduction can be

overcome by parallel implementation of LRZF decoders. For

2k transmit antennas, the nature of the cyclotomic STBCs

allows for a significant reduction in decoding complexity -

in such cases, LLL reduction needs to be applied only once,

followed by multiple zero-forcing operations and simple

resolution of the multiple estimates.
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