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Sequential Nonparametric Detection of Anomalous
Data Streams

Sreeram C. Sreenivasan and Srikrishna Bhashyam

Abstract—We study a nonparametric search problem to detect
L anomalous streams from a finite set of S data streams. The L
anomalous streams are real-valued independent and identically
distributed (i.i.d.) sequences drawn from the distribution q, while
the remaining S−L data streams are i.i.d. sequences drawn from
the distribution p. The distributions p and q are assumed to be
arbitrary and unknown, but distinct. We consider two cases: one
where L = 1, and the other where 0 ≤ L ≤ A. In both cases,
we propose universal distribution-free sequential tests that are
consistent. For the first case, we also: (1) show that the test
is universally exponentially consistent and stops in finite time
almost surely, and (2) bound the limiting growth rate of the
expected stopping time as the probability of error decreases to
zero. Simulations show that the performance of the proposed test
is better than that of the fixed sample size test.

I. INTRODUCTION

Algorithms for detection of anomalous data streams find
applications in search problems, sensor networks, fraud de-
tection, environmental monitoring, etc. [4], [8]. In this work,
we consider the anomalous or outlier hypothesis testing prob-
lem of detecting L anomalous data streams among a finite
collection of S data streams. The typical data streams are
i.i.d. sequences drawn according to p, while the L anomalous
data streams are i.i.d. sequences drawn according to q. Various
results in the setting where p and q are known are discussed in
[7], [8]. In this work, we focus on the nonparametric setting
where no information is known about either p or q, except
that they are distinct. When S = 2, the problem reduces to
the two-sample testing problem in [3].

Fixed sample size (FSS) generalized likelihood-based tests
were derived in [2], [5] for the case when p and q are discrete
distributions over finite alphabets. The error exponents were
analyzed and the tests were shown to be universally consistent.
In [1], continuous distributions were considered, but the typical
distribution p is assumed to be known. FSS tests were derived
for the more general case of unknown p and q without the finite
alphabet restriction in [11]. The decision statistic is based on
the maximum mean discrepancy (MMD) introduced in [3].

Universal sequential outlier hypothesis tests were proposed
in [6] for the case of discrete p and q over finite alphabets. The
tests were shown to be universally consistent and to stop in
finite time almost surely. In this letter, we propose an universal
sequential outlier hypothesis test for the hitherto open general
nonparametric case of unknown arbitrary distributions without
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the finite alphabet restriction. Our test also uses the MMD in
[3], [11]. We propose distribution-free consistent sequential
tests for two cases: (1) L = 11, and (2) 0 ≤ L ≤ A <
S/2, where A is a given constant. For the L = 1 case, the
proposed test is also universally exponentially consistent, and
stops almost surely in finite time. The limiting growth rate
of the expected delay, as the probability of error decreases to
zero, is also bounded. While our tests use the MMD in [3], our
work is different: we consider the sequential setting, generalize
the method in [6] to detect anomalous streams in continuous
valued data streams, use a max-min MMD distance between
groups of sequences to do this, and, furthermore, the test and
consistency analysis depends on the assumptions on L.

II. PROBLEM STATEMENT

Consider the following anomaly detection problem. There
are S data streams {X1, . . . , XS}, each being a sequence of
i.i.d. samples drawn from either p (typical distribution) or q
(anomalous distribution). Streams Xi and Xj are independent
for i 6= j. The distributions p and q are unknown and arbitrary.
The number of anomalous streams is denoted by L. We
consider two cases: L = 1, and 0 ≤ L ≤ A < S/2, where A is
a given constant. The set of indices of the anomalous streams
is denoted by I . Our objective is to design a consistent,
universal sequential test to detect the indices of the anomalous
streams with as few samples as possible for a given accuracy.
A universal test is distribution-free, i.e., it works for every p
and q. In the sequential setting, at each time n, one sample
from each stream is available to the detection algorithm. At
each instant, a sequential test decides whether to stop sampling
and make a decision or continue sampling. When the test
stops it outputs a decision δ for the set of indices of the
anomalous streams. The maximal error probability of a test
Pmax is the maximum of PI [δ 6= I ] over I , where PI

denotes the probability measure under the hypothesis that
the set of indices of the anomalous streams is I (When
I is the null set, we use the notation P0). A sequence of
tests is said to be universally consistent if the maximal error
probability goes to zero for any distinct pair of distributions p
and q, and universally exponentially consistent if Pmax decays
exponentially in expected stopping time [6].

Our test should distinguish the anomalous streams using a
finite number of samples from each stream without knowning
p and q. To do this, we rely on the maximum mean discrep-
ancy (MMD) formulated in [3]. The MMD can be estimated

1The L = 1 case is closely related to the slippage problem studied in
statistics under some paramteric settings. See [6] for more details regarding
this connection.
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effectively from samples and the estimates converge to the true
MMD. Furthermore, MMD-based tests have been observed to
be more effective that several others in [11] for the FSS setting.
Consider a class of measurable functions F , to be defined
soon, with a common metric domain (X , d) and range R.
Also consider distributions p and q on X (p 6= q) and X -
valued random variables X,Y distributed according p and q,
respectively. The MMD is defined as:

MMD [p, q] = sup
f∈F

(Ep [f(X)]− Eq [f(Y )]) ,

where Ep and Eq denote the expectation under the proba-
bility distributions p and q, respectively. In [3], the authors
propose the unit ball in a reproducing kernel Hilbert space
H as their choice of F . With this choice for F , they
also give finite-sample estimators for the MMD. We use
the unbiased estimator M2

u of the square of MMD in our
work: Given two sequences Xn

i = {xi1, xi2, · · · , xin}, and
Xn
j = {xj1, xj2, · · · , xjn}, each of n i.i.d samples, the

unbiased estimator of the square of the MMD is given by
[3, Lemma 6]:

M2
u(i, j, n) =

1

n(n− 1)

∑
l 6=m

h(zl, zm),

where zl = (xil, xjl), h(zl, zm) = k(xil, xim)+k(xjl, xjm)−
k(xil, xjm)− k(xim, xjl), and k(x, y) is the kernel function2.
This estimate M2

u(i, j, n + 1) can be computed sequentially
from M2

u(i, j, n) as:

n− 1

n+ 1
M2
u(i, j, n) +

1

n(n+ 1)

n∑
l=1

[h(zn+1, zl) + h(zl, zn+1)].

The sequential update requires O(n) computations while full
computation requires O(n2) computations. Suppose Xn

i is
i.i.d. according to p and Xn

j is i.i.d. according to q. From the
large deviation bound in [3, Lemma 10] for M2

u(i, j, n) and
the summability of this bound, we get almost sure convergence
of M2

u(i, j, n) to MMD2(p, q).

III. PROPOSED NONPARAMETRIC SEQUENTIAL TESTS

In this section we present our proposed nonparametric
sequential tests. We use S = {1, . . . , S} and I c = S \I .
Let SA denote the set of all possible (non-empty) anomalous
subsets I . For example, when L = 1, SA is the set of single
element subsets of S . At each time n ≥ 2, our proposed test
identifies a candidate anomalous subset as

În = argmax
A∈SA

{
min
i∈A

min
j∈S \A

M2
u(i, j, n)

}
, (1)

i.e., for each subset A , the minimum distance between a
stream in A and another in S \ A is determined. Then,
the subset of streams which has the maximum such minimum
distance is chosen as the candidate anomalous subset. Thus,
we employ the max-min distance

Γn = min
i∈În

min
j∈S \În

M2
u(i, j, n), (2)

2We assume that the kernel function is bounded by K, i.e., 0 ≤ k(x, y) ≤
K <∞. This also implies that MMD(p, q) and M2

u(i, j, n) are bounded.

as our test statistic. We propose the test NP-SEQ(α, T0) given
by the following stopping and decision rules:

N = min{Ñ , T0}, (3)

δ =

{
ÎÑ , Ñ < T0

∅, otherwise
, (4)

where N is the stopping time, ∅ denotes the null set,
T0 is a time-out parameter and Ñ is given by Ñ =
argminn≥2 {Γn > Tn}, and Tn = C/nα is a time-varying
threshold with C ≥ C0 > 0 and α > 0, where C0 is a strictly
positive constant.
A. Exactly one anomaly (L = 1)

For this case, we have S hypotheses with hypothesis i
corresponding to I = {i}, for 1 ≤ i ≤ S. We set α = 1
and T0 = ∞ in NP-SEQ(α, T0). We denote this test NP-
SEQ-1. Observe that the max-min distance converges almost
surely to MMD2(p, q) > 0. This, along with the choice of
monotonically-decreasing Tn, ensures that the test stops in
finite time almost surely.

Theorem 1: The stopping time N is almost surely finite,
i.e., under each hypothesis i, 1 ≤ i ≤ S, Pi [N <∞] = 1.

Proof: See section VI-A of the appendix.
Theorem 2: The test is universally consistent. That is, for

all distinct p, q, the threshold Tn = C/n is independent of p
and q, and the error probability satisfies limC→∞ Pmax = 0.

Proof: See section VI-B of the appendix.
To show universal consistency, we show that the error proba-
bility goes to zero for a sequence of tests with threshold value
increasing to infinity.

Remark 1: Theorems 1 and 2 also hold for a sequential test
with threshold C/nα for any α > 0 (by proper choice of n0
to satisfy (8)). We observed in the performance simulations
that the choice of α = 1 gives the best performance in terms
of expected delay.

Theorem 3: Under each hypothesis i, the stopping time N
satisfies

lim
C→∞

Ei
[∣∣∣∣NC − 1

MMD2(p, q)

∣∣∣∣] = 0,

where Ei denotes expectation under hypothesis i. Conse-
quently, we have, for each hypothesis i and any p, q, that

Ei [N ] ≤ −32K2 logPmax

MMD4(p, q)
(1 + o(1)). (5)

Thus, the test is universally exponentially consistent.
Proof: See section VI-C of the appendix.

The proof uses the almost sure convergence of the estimate
of the MMD2 to the true MMD2 as n → ∞, and the
observation that N → ∞ as C → ∞. From (5), the growth
rate of expected stopping time, i.e., Ei[N ]

log(1/Pmax)
, is bounded

by 32K2/MMD4(p, q) asymptotically (for small Pmax).
Note that the case where the number of anomalous se-

quences is one or zero is a special case of the next subsection
with A set to 1.
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Fig. 1: Performance of NP-SEQ-1 and of NP-SEQ-UA

B. At most A anomalies (0 ≤ L ≤ A)

We assume 1 ≤ A < S/2. The set of all possible anomalous
subsets SA is the set of all non-empty subsets of S with
number of elements less than or equal to A. We propose the
sequential test NP-SEQ(α, T0) with α = 0.5 and T0 = BC2,
where B is a sufficiently large constant chosen such that T0 ≥⌈

4C2

MMD4(p,q)

⌉
+ 1. We denote this test NP-SEQ-UA.

Theorem 4: The test NP-SEQ-UA is universally consistent,
i.e., the error probability satisfies limC→∞ Pmax = 0.

Proof: See appendix. We show that, for any I ∈ SA,

lim
C→∞

P0 [δ 6= ∅] = 0 and lim
C→∞

PI [δ 6= I ] = 0.

IV. SIMULATION RESULTS

For all our experiments we used the Gaussian kernel [3],
[11], which makes the MMD a metric, and chose σ2 = 0.5.
We chose S = 5, and set the typical distribution to be p =
N (0, 1). The results are averaged across 100000 realizations.
In Figs. 1a and 1b, we compare the sequential test NP-SEQ-
1 with the nonparametric fixed sample size (NP-FSS) test3

in [11], NP-SEQ(0.5,∞) (a test with a slower decay in the
threshold) and NP-SEQ(2,∞) (a test with a faster decay in
the threshold). Figs. 1a and 1b show the average stopping
delay versus − log10 Pmax for two choices of q: N (1.2, 1),
and L (0, 1/

√
2), where L (0, 1/

√
2) denotes a Laplacian

distribution with zero mean and unit variance. For the NP-FSS
test of [11], we plot the sample size versus log10(1/Pmax). We
observe that: (1) the sequential test (NP-SEQ-1) performs bet-
ter than the NP-FSS test in both cases, (2) NP-SEQ-1 performs
better than both NP-SEQ(0.5,∞) and NP-SEQ(2,∞), and (3)
the slope from the plots is upper bounded by the theoretical
upper bound in (5). The MMD2(p, q) for Figs. 1a and 1b are
0.2288 and 0.01357, respectively.

Figs. 1c and 1d show the performance of NP-SEQ-UA (with
q being N (1.2, 1), and A = 1, 2) under hypothesis I = {5}
and null hypothesis, respectively. It can be observed that: (1)
the false alarm error goes to 0 as C →∞, and (2) the growth
of expected delay versus log of the mis-identification error is
similar to the case with exactly one anomaly.

3The NP-FSS test for n samples and known L declares the L sequences
with largest M2

u(i, ī) to be the anomalous sequences, where M2
u(i, ī) is the

unbiased estimate of the square of the MMD between the ith sequence Xn
i

and the sequence X̄n
i = {Xn

1 , X
n
2 , . . . , X

n
i−1, X

n
i+1, . . . , X

n
S} which is a

concatenation of all sequences except the ith sequence.

V. SUMMARY AND FUTURE WORK

We proposed universal, distribution-free, consistent sequen-
tial tests for detecting L anomalous data streams among a
finite collection of S data streams for two cases: L = 1 and
0 ≤ L ≤ A < S/2. This nonparametric setting is more general
than the setting in [6] where the p and q are assumed to be
over finite alphabets. The performance is better the FSS test
for this setting in [11]. Some interesting directions for future
work are: finding second-order asymptotically optimal tests
as in [10] for our setting, and considering the setting with
restrictions on the number of observed streams at each time
[4], [9] since the sampling strategy is to be optimized.

VI. APPENDIX

A. Proof of Theorem 1

Proof: Let Ni be defined as:

Ni = argmin
n≥2

{
min
j 6=i

M2
u(i, j, n) > Tn

}
. (6)

The actual stopping time of the proposed algorithm N satisfies,
N ≤ Ni for all i. Let the ith data stream be anomalous. Let

n0 =

⌈
2C

MMD2(p, q)

⌉
+ 1. (7)

Note that for n > n0, we have

Tn−1 −MMD2(p, q) ≤ −MMD2(p, q)

2
< 0. (8)

For any n > n0, we have

Pi [N ≥ n] ≤ Pi [Ni ≥ n]

= Pi
[
min
j 6=i

M2
u(i, j, n1) ≤ Tn1

,∀ n1 < n

]
≤ Pi

[
min
j 6=i

M2
u(i, j, n− 1) ≤ Tn−1

]
≤
∑
j 6=i

Pi
[
M2
u(i, j, n− 1) ≤ Tn−1

]
=
∑
j 6=i

Pi
[
M2
u(i, j, n− 1)−MMD2(p, q)

≤ Tn−1 −MMD2(p, q)
]

≤
∑
j 6=i

exp

{
−
(
Tn−1 −MMD2(p, q)

)2
(n− 1)

16K2

}
(9)
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≤ (S − 1) e−a(n−1) (10)

where a = MMD4(p, q)/64K2 and inequality (9) follows
from [3, Thm.10]. Thus, Pi [N ≥ n] → 0 as n → ∞. Since
Pi [Ni =∞] ≤ Pi [Ni ≥ n] ∀n, we have Pi [Ni =∞] = 0.

B. Proof of Theorem 2

Proof: From Thm. 1, the algorithm stops in finite time
with probability 1. We assume without loss of generality that
the first stream is anomalous, i.e., I = {1}, and consider
error terms, P1 [δ = j]. where j 6= 1. For j 6= 1, we have

P1 [δ = j] =

n0∑
n≥2

P1 [N = n, δ = j]+

∞∑
n>n0

P1 [N = n, δ = j] ,

where n0 is as defined in (7). Since, P1 [N = n, δ = j] ≤
P1 [N = n], it follows from (10) that

∞∑
n>n0

P1 [N = n, δ = j] ≤
∞∑

n>n0

(S − 1) e−a(n−1)

=
(S − 1) e−an0

1− e−a
≤

(S − 1) exp
{
−MMD2(p,q)C

32K2

}
1− e−a

,

(11)

since n0 > 2C
MMD2(p,q)

. For n ≤ n0, we have

P1 [N = n, δ = j] ≤ P1

[
N = n,min

l 6=j
M2
u(j, l, n) > Tn

]
≤ P1

[
min
l 6=j

M2
u(j, l, n) > Tn

]
≤ P1

[
M2
u(j, l, n) > Tn

]
(12)

≤ exp

(
−Tn

2(n− 1)

16K2

)
= exp

(
−C

2(n− 1)

16K2n2

)
(13)

≤ exp

(
−C

2(n0 − 1)

16K2n20

)
≤ exp

(
−MMD2(p, q)Cg(C)

32K2

)
,

(14)

where l is chosen such that l 6= 1 in (12) and g(C) =
2

MMD2(p,q)

(
2

MMD2(p,q)
+ 1

C

)
(

2
MMD2(p,q)

+ 2
C

)2 . Since both jth and lth streams are

not anomalous, M2
u(j, l, n) → 0 as n → ∞, and inequality

(13) follows from the Hoeffding bound for M2
u in [3, Thm.

10]. Combining (14) and (11), and using (7), we get

P1 [δ = j] ≤
[

2C

MMD2(p, q)
+ 1

]
exp

{
−MMD2(p, q)Cg(C)

32K2

}

+
(S − 1) exp

{
−MMD2(p,q)C

32K2

}
1− e−a

,

which goes to 0 as C →∞. The maximum error probability
is Pmax = maxi=1,...,S Pi [δ 6= i]. Since Pmax → 0 as C →∞,
the test is universally consistent. Furthermore, for sufficiently
large C, we can bound Pmax as

Pmax ≤ exp

{
−
(

MMD2(p, q)

32K2
− ε
)
C

}
. (15)

C. Proof of Theorem 3
Proof: We know from Theorem 1 that the stopping time is

finite almost surely. Therefore with probability one under each
non-null hypothesis, we have that ΓN > C

N and ΓN−1 ≤ C
N−1 .

Equivalently, we have
1

ΓN
<

N

C
≤ 1

ΓN−1
+

1

C
. (16)

Since the kernel is bounded between 0 and K, the statistic Γn
is bounded between −2K and 2K. Therefore, for n < C/2K,
Γn < C/n, and P [N < n] = 0. This implies that as C →∞,
the stopping time N → ∞. As n → ∞, we have Γn →
MMD2(p, q) almost surely using [3, Thm. 10], Borel-Cantelli
Lemma and the fact that the series involving the upper bound
in [3, Thm. 10] is summable. Thus, from (16), we have N

C →
1

MMD2(p,q)
, almost surely as C → ∞ under Pi [·], and hence

in probability. Finally, we get the convergence stated in the
theorem since the collection of random variables {N/C,C ≥
C0} is uniformly integrable. Universal exponential consistency
is obtained by combining the convergence result for N/C with
the exponential bound for Pmax in terms of C in (15).
D. Proof of Theorem 4

Proof: First, consider false alarm probability P0 [δ 6= φ].

P0 [δ 6= φ] =

T0−1∑
n=2

P0

[
Ñ = n

]
≤
T0−1∑
n=2

P0 [Γn > Tn]

≤
T0−1∑
n=2

P0

[
min
i∈A

min
j∈S \A

M2
u(i, j, n) > Tn for some A ∈ SA

]

≤ |SA|
T0−1∑
n=2

P0

[
M2
u(i, j, n) > Tn

]
(with i 6= j)

≤ |SA|
T0−1∑
n=2

exp

(
−T

2
n(n− 1)

16K2

)
(17)

≤ |SA|(T0 − 2) exp

(
− C2

16K2

(
1− 1

T0 − 1

))
,

which goes to 0 as C → ∞. Next, consider PI [δ 6= I ] =
PI [δ = φ] + PI [δ 6= I , δ 6= φ]. Similar to (6), define:

NI = argmin
n≥2

{
min
i∈I

min
j∈S \I

M2
u(i, j, n) > C/

√
n

}
.

The stopping time Ñ satisfies Ñ ≤ NI for all I . Under any
non-null hypothesis I ∈ SA, we have

PI [δ = φ] = Pi
[
Ñ ≥ T0

]
≤ PI [NI > T0]

(a)

≤ |I |(S − |I |)e−a(T0−1)
(b)

≤ |I |(S − |I |)e−
C2

16K2 ,

where (a) is obtained following the steps from (8)-(10) in
Theorem 1, and (b) is obtained by choosing T0 ≥ n0 =⌈

4C2

MMD4(p,q)

⌉
+ 1. Thus, PI [δ = φ] → 0 as C → ∞. The

term PI [δ 6= I , δ 6= φ] can also be shown to go to zero as
C → ∞ as follows: (1) Bound this term by the probability
of error under hypothesis I without a timeout (T0 = ∞),
(2) then follow the steps in the proof of Theorem 2 with
Tn = C/

√
n. The resulting bound for PI [δ 6= I , δ 6= φ] is

of the form k1 exp(−C2/32K2), where k1 is a constant, and
goes to 0 as C →∞.
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