EE6340: Information Theory Problem Set 4

1. Shuffles increase entropy. Argue that for any distribution on shuffles T and any distribution on card positions X that

$$H(TX) \geq H(TX|T) \tag{1}$$

$$= H(T^{-1}TX|T) \tag{2}$$

$$= H(X|T) \tag{3}$$

$$= H(X), \tag{4}$$

if X and T are independent.

2. Monotonic convergence of the empirical distribution. Let \hat{p}_n denote the empirical probability mass function corresponding to X_1, X_2, \dots, X_n i.i.d. $\sim p(x), x \in \mathcal{X}$. Specifically,

$$\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i = x)$$
(5)

is the proportion of times that $X_i = x$ in the first *n* samples, where *I* is an indicator function

(a) Show for \mathcal{X} binary that

$$ED(\hat{p}_{2n}||p) \le ED(\hat{p}_n||p). \tag{6}$$

Thus the expected relative entropy "distance" from the empirical distribution to the true distribution decreases with sample size. *Hint:* Write $\hat{p}_{2n} = \frac{1}{2}\hat{p}_n + \frac{1}{2}\hat{p}'_n$ and use the convexity of D.

(b) Show for an arbitrary discrete \mathcal{X} that

$$ED(\hat{p}_n||p) \le ED(\hat{p}_{n-1}||p). \tag{7}$$

Hint: Write \hat{p}_n as the average of n empirical mass functions with each of the n samples deleted in turn.

- 3. Random box size. An *n*-dimensional rectangular box with sides $X_1, X_2, ..., X_n$ is to be constructed. The volume is $V_n = \prod_{i=1}^n X_i$. The edge length *l* of a *n*-cube with the same volume as the random box is $l = V_n^{1/n}$. Let $X_1, X_2, ..., X_n$ be i.i.d. uniform random variables over the unit interval [0,1]. Find $\lim_{n\to\infty} V_n^{\frac{1}{n}}$, and compare to $(EV_n)^{1/n}$. Clearly the expected edge length does not capture the idea of the volume of the box.
- 4. Monotonicity of entropy per element. For a stationary stochastic process $X_1, X_2, ..., X_n$, show that,

$$\frac{H(X_1, X_2, \dots, X_n)}{n} \le \frac{H(X_1, X_2, \dots, X_{n-1})}{n-1}.$$
(8)

(b)

$$\frac{H(X_1, X_2, \dots, X_n)}{n} \ge H(X_n | X_{n-1}, \dots, X_1)$$
(9)

5. Doubly stochastic matrices. An $n \times n$ matrix $P = [P_{ij}]$ is said to be doubly stochastic if $P_{ij} \ge 0$ and $\sum_j P_{ij} = 1$ for all i and $\sum_i P_{ij} = 1$ for all j. An $n \times n$ matrix P is said to be a permutation matrix if it is doubly stochastic and there is precisely one $P_{ij} = 1$ in each row and each column.

It can be shown that every doubly stochastic matrix can be written as the convex combination of permutation matrices.

- (a) Let $\mathbf{a}^{\mathbf{t}} = (a_1, a_2, \dots, a_n), a_i \ge 0, \sum a_i = 1$, be a probability vector. Let $\mathbf{b} = \mathbf{a} P$, where P is doubly stochastic. Show that \mathbf{b} is a probability vector and that $H(b_1, b_2, \dots, b_n) \ge H(a_1, a_2, \dots, a_n)$. Thus stochastic mixing increases entropy.
- (b) Show that a stationary distribution μ for a doubly stochastic matrix P is the uniform distribution.
- (c) Conversely, prove that if the uniform distribution is a stationary distribution for a Markov transition matrix P, then P is doubly stochastic.
- 6. The entropy rate of a dog looking for a bone. A dog walks on the integers, possibly reversing direction at each step with probability p = 0.1. Let $X_0 = 0$. The first step is equally likely to be positive or negative. A typical walk might look like this: $(X_0, X_1, ...) = (0, -1, -2, -3, -4, -3, -2, -1, 0, 1, ...)$
 - (a) Find $H(X_0, X_1, X_2, ..., X_n)$.
 - (b) Find the entropy rate of this browsing dog.
 - (c) What is the expected number of steps the dog takes before reversing direction?