EE6340: Information Theory Problem Set 2

- 1. Entropy of a sum. Let X and Y be random variables that take on values $x_1, x_2, ..., x_r$ and $y_1, y_2, ..., y_s$, respectively. Let Z = X + Y.
 - (a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then $H(Y) \le H(Z)$ and $H(X) \le H(Z)$. Thus the addition of *independent* random variables adds uncertainty.
 - (b) Give an example (of necessarily dependent random variables) in which H(X) > H(Z)and H(Y) > H(Z).
 - (c) Under what conditions does H(Z) = H(X) + H(Y)?
- 2. Entropy of a disjoint mixture. Let X_1 and X_2 be discrete random variables drawn according to probability mass functions $p_1(.)$ and $p_2(.)$ over the respective alphabets $\chi_1 = \{1, 2, ..., m\}$ and $\chi_2 = \{m + 1, 2, ..., n\}$.Let

$$X = \begin{cases} X_1, & \text{with probability } \alpha, \\ X_2, & \text{with probability } 1 - \alpha \end{cases}$$

- (a) Find H(X) in terms of $H(X_1)$ and $H(X_2)$ and α .
- (b) Maximize over α to show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$ and interpret using the notion that $2^{H(X)}$ is the effective alphabet size.
- (c) Let X_1 and X_2 be uniformly distributed over their alphabets. What is the maximizing α and the associated H(X)?
- 3. Mixing increases entropy. Show that the entropy of a probability distribution, $(p_1, ..., p_i, ..., p_j, ..., p_m)$, is less than the entropy of the distribution $\left(p_1, ..., \frac{p_i + p_j}{2}, ..., \frac{p_i + p_j}{2}, ..., p_m\right)$. In general any transfer of probability that makes the distribution more uniform increases the entropy.
- 4. Run length coding. Let $X_1, X_2, ..., X_n$ be (possibly dependent) binary random variables. Suppose one calculates the run lengths $\mathbf{R} = (R_1, R_2, ...)$ of this sequence (in order as they occur). For example, the sequence $\mathbf{X} = 0001100100$ yields run lengths $\mathbf{R} = (3, 2, 2, 1, 2)$. Compare $H(X_1, X_2, ..., X_n), H(\mathbf{R})$ and $H(X_n, \mathbf{R})$. Show all equations and inequalities, and bound all the differences.
- 5. Conditional mutual information vs. unconditional mutual information. Give examples of joint random variables X, Y and Z such that
 - (a) I(X;Y|Z) < I(X;Y),
 - (b) I(X;Y|Z) > I(X;Y).
- 6. Data processing. Let $X_1 \to X_2 \to X_3 \to \dots \to X_n$ form a Markov chain in this order; i.e., let

 $p(x_1, x_2, ..., x_n) = p(x_1) p(x_2|x_1) ... p(x_n|x_{n-1}).$

Reduce $I(X_1; X_2, ..., X_n)$ to its simplest form.