EE613: Estimation Theory Problem Set 8

1. Consider the estimation of DC in zero-mean Gaussian noise, and assume that the noise samples are correlated with the covariance matrix

	[1]	ρ	0	0	•••	0	0	
	ρ	1	0	0	• • •	0	0	
	0	0	1	ρ	• • •	0	0	
$\mathbf{C} = \sigma^2$	0	0	ρ	1	• • •	0	0	
	:	÷	÷	÷	۰.	÷	÷	ĺ
	0	0	0	0		1	ρ	
	0	0	0	0		ρ	1	

where $|\rho| < 1$ and N, the dimension of the matrix, is assumed to be even. **C** is a blockdiagonal matrix and so is easily inverted. Find the BLUE and its variance and interpret your results.

2. Assume that x[n] = As[n] + w[n] for n = 0, 1, ..., N - 1 are observed, where w[n] is zero mean noise with covariance matrix **C** and s[n] is a known signal. The amplitude A is to be estimated using a BLUE. Find the BLUE and discuss what happens if $\mathbf{s} = [s[0] \ s[1] \ ... \ s[N-1]]^T$ is an eigenvector of **C**. Also, find the minimum variance.