EE613: Estimation Theory

Problem Set 11

1. The data model is $x[n]=a \cos \left(2 \pi f_{0} n\right)+b \sin \left(2 \pi f_{0} n\right)+w[n]$ for $n=0,1, \ldots, N-1$, where f_{0} is a multiple of $1 / N$, excepting 0 or $1 / 2$ (for which $\sin \left(2 \pi f_{0} n\right)$ is identically zero), and $w[n]$ is WGN with variance σ^{2}. It is desired to estimate $\boldsymbol{\theta}=\left[\begin{array}{ll}a & b\end{array}\right]^{T} . a$ and b are random variable with prior $\operatorname{PDF} \boldsymbol{\theta} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{\theta}^{2} \mathbf{I}\right)$, and $\boldsymbol{\theta}$ is independent of $w[n]$. Find the MMSE estimate of $\boldsymbol{\theta}$.
2. For the posterior PDF

$$
p(\theta \mid x)= \begin{cases}\exp [-(\theta-x)] & \theta>x \\ 0 & \theta<x\end{cases}
$$

find the MMSE and MAP estimators.
3. The data $x[n]=A+w[n]$ for $n=0,1, \ldots, N-1$ are observed. The unknown parameter A is assumed to have the prior PDF

$$
p(A)= \begin{cases}\lambda \exp (-\lambda A) & A>0 \\ 0 & A<0\end{cases}
$$

where $\lambda>0$, and $w[n]$ is WGN with variance σ^{2} and is independent of A. Find the MAP estimator of A.
4. In fitting a line through experimental data we assume the model

$$
x[n]=A+B n+w[n] \quad-M \leq n \leq M
$$

where $w[n]$ is WGN with variance σ^{2}. If we have some prior knowledge of the slope B and intercept A such as

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
A_{0} \\
B_{0}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{A}^{2} & 0 \\
0 & \sigma_{B}^{2}
\end{array}\right]\right)
$$

find the MMSE estimator of A and B as well as the minimum MSE. Assume that A, B are independent of $w[n]$.

