EE613: Estimation Theory

Problem Set 1

1. Let $x=\theta+w$, where w is a random variable with $\operatorname{PDF} p_{w}(w)$. If θ is a deterministic parameter, find the PDF of x in terms of p_{w} and denote it by $p(x ; \theta)$. Next, assume that θ is a random variable independent of w and find the conditional PDF $p(x \mid \theta)$. Finally, do not assume that θ and w are independent and determine $p(x \mid \theta)$. What can you say about $p(x ; \theta)$ versus $p(x \mid \theta)$?
2. The data $\{x[0], x[1], \cdots, x[N-1]\}$ are observed where $x[n]$'s are independent and identically distributed (IID) as $\mathcal{N}\left(0, \sigma^{2}\right)$. We wish to estimate the variance σ^{2} as

$$
\hat{\sigma^{2}}=\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]
$$

Is this an unbiased estimator? Find the variance of $\hat{\sigma^{2}}$ and examine what happens as $N \rightarrow \infty$.
3. This problem illustrates what happens to an unbiased estimator when it undergoes a nonlinear transformation. Consider the example discussed in class: $x[n]=A+w[n]$, where $w[n]$ is zero mean white Gaussian noise. If we choose to estimate the unknown parameter $\theta=A^{2}$ by

$$
\hat{\theta}=\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right)^{2}
$$

can we say that the estimator is unbiased? What happens as $N \rightarrow \infty$?
4. Given a single observation $x[0]$ from the distribution $\mathcal{U}[0,1 / \theta]$, it is desired to estimate θ. It is assumed that $\theta>0$. Show that for an estimator $\hat{\theta}=g(x[0])$ to be unbiased we must have

$$
\int_{0}^{\frac{1}{\theta}} g(u) d u=1
$$

Next, prove that a function g cannot be found to satisfy this condition for all $\theta>0$.

