
EE611 Solutions to Problem Set 5

1. Let the coefficients of feed-forward filter be cn, n ∈ {−3,−2,−1, 0} and of feedback
filter be cn, n ∈ {1, 2} and fn = 1, n ∈ {0, 1, 2}. The feedback filter should be
chosen as follows.

c1 = − (0.25c
−1 + c0) and c2 = −0.25c0.

The feedforward filter coefficients can be determined using the orthogonality equa-
tions as follows.
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Therefore, we have c
−3 = 0.0287, c

−2 = −0.1806, c
−1 = 0.8826, c0 = 0.2501,

c1 = −0.4708, and c2 = −0.0625.

2. (a) First we express I(X; Y ), the mutual information between the input and output
of the Z-channel, as a function of x = P [X = 1].

H(Y/X) = P [x = 0].0 + P [x = 1].1 = x

H(Y ) = H(P [y = 1]) = H(x/2)

I(X; Y ) = H(Y ) − H(Y/X) − H(x/2) − x

Since I(X; Y ) = 0 when x = 0 and x = 1, the maximum mutual information is
obtained for some value of x such that 0 < x < 1.

d

dx
I(X; Y ) =

1

2
log2

1 − x/2

x/2
− 1,

which is zero for x = 2/5. So, the capacity of the Z-channel in bits is H(1/5)−2/5 =
0.722− 0.4 = 0.322. It is reasonable that x < 1/2 because X = 1 is the noisy input
to the channel.
(b) I(X; Y ) = H(Y )−H(Y/X) = H(Y )−H(p) ≤ log 3−H(p). There is no input
distribution pX(x) that gives pY (y) to be uniform {0, e, 1}.
Let P [X = 0] = α, P [Y = 0] = α(1 − p), P [Y = 1] = (1 − α)(1 − p), and
P [Y = e] = αp + (1 − α)p.

H(y) = α(1 − p) log
1

α(1 − p)
+ (1 − α)(1 − p) log

1

(1 − α)(1 − p)
+ p log

1

p

p log
1

p
+ (1 − p) log

1

(1 − p)
+ (1 − p)

[

α log
1

α
+ (1 − α) log

1

(1 − α)

]

= H(p) + (1 − p)H(α).

I(X; Y ) = (1 − p)H(α). (1)
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Therefore, by choosing the input to be uniform, we get the capacity C = 1 − p.
(c)I(X; Y ) = H(Y ) − H(Y/X) = H(Y ) − H(0.2). The capacity is achieved by
making the output of the channel uniformly distributed. This can be achieved by
choosing the input to be uniform. C = 2 − H(0.2) = 2 − 0.72193 = 1.2781 bits.

3. (a) At “low” SNR, the channel with higher SNR should be used. SNR of channel
1 is |h1|2/N1 = 2 and SNR of channel 2 is |h2|2/N2 = 9/2. Therefore, at “low”
SNR, only channel 2 should be used.

(b) If P < N2/|h2|2 − N1/|h1|2 = 1/2 − 2/9 = 5/18, only channel 2 is used. If
P > 5/18, both channels will be used.

(c) The water filling power allocation is as follows:

P1 = (ν − 1/2)+ (power allocated to channel 1),

P2 = (ν − 2/9)+ (power allocated to channel 2),

and
P1 + P2 = P.

The capacity using water-filling power allocation is

1

2
log2

(

1 +
P1|h1|2

N1

)

+
1

2
log2

(

1 +
P2|h2|2

N2

)

.

Therefore, we have

C =
1

2
log2 (1 + 2P )

for P < 5/18 and

C =
1

2
log2 (1 + 2P1) +

1

2
log2 (1 + 9P2/2)

for P > 5/18, where P1 = P/2 − 5/36.

The capacity using equal power allocation is

1

2
log2

(

1 +
P |h1|2
2N1

)

+
1

2
log2

(

1 +
P |h2|2
2N2

)

.

See Figure 1 for the capacity plot.

4. The channel model is given by: Y = X+Z, where X ∈ {+1,−1} and Z ∼ N (0, σ2).
It has been shown that the mutual information I(X; Y ) subject to the constraint
of BPSK signaling, is maximized for equiprobable signaling. As with the capacity
without an input alphabet constraint, the capacity for BPSK also depends on these
parameters only through their ratio, the SNR 1/σ2. Therefore, replace Y by Y/σ
to get the model

Y =
√

SNR X + Z, X ∈ {−1, +1}, Z ∼ N (0, σ2) (2)
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For notational simplicity, set A =
√

SNR, We have

p(y/ + 1) =
1√
2π

e−(y−A)2/2

p(y/ − 1) =
1√
2π

e−(y+A)2/2

and

p(y) =
1

2
p(y/ + 1) +

1

2
p(y/ − 1) (3)

We can compute
I(X; Y ) = h(Y ) − h(Y/X)

h(Y/X) = h(Z) = 1/2 log2(2πe), since Z ∼ N (0, σ2). h(y) = −
∫

log2(pY (y))pY (y)dy
can be computed by numerical integration, plugging in eq. (3). An alternative ap-
proach, which is particularly useful for more complicated constellations and channel
models, is to use Monte carlo integration (i.e., simulation-based empirical averag-
ing) for computing the expectation h(Y ) = −E[log2(p(Y )]. For this method, we
generate i.i.d. samples Y1, · · ·Yn and then use the estimate

ĥ(Y ) =
1

n

n
∑

i=1

log2p(Yi). (4)

We can also use the alternative formula

I(X; Y ) = H(X) − H(X/Y ) (5)

to compute the capacity. For equiprobable binary input, H(X) = HB

(

1
2

)

= 1
bits/symbol. It remains to compute

H(X/Y ) =

∫

H(X/Y = y)pY (y)dy (6)

By Baye’s rule, we have

P [X = +1/Y = y] =
P [X = +1]p(y/ + 1)

p(y)

=
P [X = +1]p(y/ + 1)

P [X = +1]p(y/ + 1) + P [X = −1]p(y/ − 1)

=
eAy

eAy + e−Ay
(equal priors) (7)

We also have

P [x = +1]Y = y] = 1 − P [X = +1/Y = y] =
e−Ay

eAy + e−Ay
(8)

Such a posteriori probability computations can be thought of as soft decisions on the
transmitted bits, and are employed extensively when we discuss iterative decoding.
We can now use the binary entropy function to compute

H(X/Y = y) = HB(P [X = +1/Y = y]) (9)
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The average in eq. (6) can now be computed by either direct numerical integration
or by Monte carlo integration as before. The later, which generalizes better to more
complex models, gives the estimate

Ĥ(X/Y ) =
1

n

n
∑

i=1

HB(P [X = +1/Yi = yi]) (10)

The plot of the mutual information of BPSK signaling in AWGN channel is shown
in the following figure
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Figure 1: Comparison of capacities with equal power allocation and water-filling power
allocation
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Figure 2: Mutual Information for BSPK signaling vs. SNR
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