EE611 Solutions to Problem Set 4

1. The equivalent discrete-time filter model for the sampled matched filter output is (assuming a is real)

$$y_k = aI_{k-1} + (1+a^2)I_k + aI_{k+1} + \nu_k,$$

where $\{\nu_k\}$ is zero-mean Gaussian with auto-correlation function

$$E[\nu_k \nu_{k+n}] = \begin{cases} \sigma^2 a & n = \pm 1 \\ \sigma^2 (1+a^2) & n = 0 \end{cases}$$

where σ^2 is the power spectral density of the channel AWGN.

- 2. Consider the channel model $v_k = I_k + 0.5I_{k-1} + \eta_k$.
 - (a) The possible values for $I_k + 0.5I_{k-1}$ are 1.5, 0.5, -0.5, and -1.5.
 - (b) The possible values for $I_k + 0.5I_{k-1}$ are (1.5, 1.5), (1.5, 0.5), (0.5, 1.5), (0.5, 0.5), (1.5, -0.5), (1.5, -1.5), (0.5, -0.5), (0.5, -1.5), (-0.5, 1.5), (-0.5, 0.5), (-0.5, 0.5), (-1.5, 1.5), (-1.5, 0.5), (-0.5, -0.5), (-0.5, -1.5), (-1.5, -0.5), and (-1.5, -1.5).

The received signal constellations in the absence of noise are shown in Figure 1.

For the channel model $v_k = I_k + I_{k-1} + \eta_k$, we have the following answers:

- (a) The possible values for $I_k + I_{k-1}$ are 2, 0, and -2.
- (b) The possible values for $I_k + I_{k-1}$ are (2, 2), (2, 0), (2, -2), (0, 2), (0, 0), (0, -2), (-2, 2), (-2, 0), and (-2, -2).

The received signal constellations in the absence of noise are shown in Figure 2.

- 3. (a) The state at time $k S_k$ is $\{I_{k-1} I_{k-2}\}$. Since binary signaling is used, the number of possible states is 4. The trellis diagram is shown in Figure 3.
 - (b) Let $A_k = \{I_{k-1} | I_{k-2}\}$ and $B_k = \{J_{k-1} | J_{k-2}\}$. We know that $A_l = B_l$. Therefore, we have $I_{l-1} = J_{l-1}$ and $I_{l-2} = J_{l-2}$. Since $A_{l+1} \neq B_{l+1}$, we have $I_l \neq J_l$.

$$A_{l+2} = \{I_{l+1} \ I_l\}$$
 and $B_{l+2} = \{J_{l+1} \ J_l\}.$

Since $I_l \neq J_l$, we have $A_{l+2} \neq B_{l+2}$.

- (c) From part (b), we can say that the minimum length of an error event is greater than or equal to 3. We can get an error event of length 3 if $I_k = J_k$ for k = l 1, l + 1, l + 2 and $I_l \neq J_l$. Therefore, the minimum length of an error event is 3.
- (d) The error event is shown in Figure 4. The outputs corresponding to each branch of each path are also shown. The probability that the metric for path B is greater than the metric for path A is equal to

$$Q\left(\frac{d}{2\sigma}\right),$$

where σ^2 is the variance of the η_k , and

$$d = \sqrt{(1.75 + 0.25)^2 + (1.75 - 0.75)^2 + (1.75 - 1.25)^2} = 2.2913.$$

- (e) Using arguments similar to part (b), the minimum possible length for an error event can be shown to be L + 1.
- 4. (a) The 3-tap equalizer with coefficients c_{-1} , c_0 , and c_1 can be obtained by solving the following equation

$$\begin{bmatrix} 1.25 & 0.5 & 0 \\ 0.5 & 1.25 & 0.5 \\ 0 & 0.5 & 1.25 \end{bmatrix} \begin{bmatrix} c_{-1} \\ c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Therefore, we have $c_{-1} = -0.4706$, $c_0 = 1.1765$, and $c_1 = -0.4706$.

- (b) $q_2 = q_{-2} = 0.5c_1 = -0.2353.$
- (c) The 5-tap equalizer with coefficients c_{-2} , c_{-1} , c_0 , c_1 , and c_2 can be obtained by solving the following equation

$$\begin{bmatrix} 1.25 & 0.5 & 0 & 0 & 0 \\ 0.5 & 1.25 & 0.5 & 0 & 0 \\ 0 & 0.5 & 1.25 & 0.5 & 0 \\ 0 & 0 & 0.5 & 1.25 & 0.5 \\ 0 & 0 & 0 & 0.5 & 1.25 \end{bmatrix} \begin{bmatrix} c_{-2} \\ c_{-1} \\ c_{0} \\ c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Therefore, we have $c_{-2} = 0.2462$, $c_{-1} = -0.6154$, $c_0 = 1.2923$, $c_1 = -0.6154$, and $c_2 = 0.2462$.

5. (a) The 3-tap MMSE equalizer with coefficients c_{-1} , c_0 , and c_1 can be obtained by solving the following equation

2.0625 + 0.125	1.25 + 0.05	0.25]	c_{-1}		0.5	
1.25 + 0.05	2.0625 + 0.125	1.25 + 0.05		c_0	=	1.25	.
0.25	1.25 + 0.05	2.0625 + 0.125		c_1		0.5	

Therefore, we have $c_{-1} = -0.2722$, $c_0 = 0.8949$, and $c_1 = -0.2722$. The 5-tap MMSE equalizer with coefficients c_{-2} , c_{-1} , c_0 , c_1 , and c_2 can be obtained by solving the following equation

$$\begin{bmatrix} 2.1875 & 1.3 & 0.25 & 0 & 0 \\ 1.3 & 2.1875 & 1.3 & 0.25 & 0 \\ 0.25 & 1.3 & 2.1875 & 1.3 & 0.25 \\ 0 & 0.25 & 1.3 & 2.1875 & 1.3 \\ 0 & 0 & 0.25 & 1.3 & 2.1875 \end{bmatrix} \begin{bmatrix} c_{-2} \\ c_{-1} \\ c_{0} \\ c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5 \\ 1.25 \\ 0.5 \\ 0 \end{bmatrix}.$$

Therefore, we have $c_{-2} = 0.1296$, $c_{-1} = -0.4178$, $c_0 = 1.0384$, $c_1 = -0.4178$, and $c_2 = 0.1296$.

(b) For the 3-tap MMSE equalizer, we have $q_{-2} = -0.13610$, $q_{-1} = 0.10720$, $q_0 = 0.84643$, $q_1 = 0.10720$, and $q_2 = -0.13610$. For the 5-tap MMSE equalizer, we have $q_3 = q_{-3} = 0.064800$, $q_2 = q_{-2} = -0.046900$, $q_1 = q_{-1} = 0.061750$, and $q_0 = 0.880200$.

Figure 3:

Figure 4: