EE611 Solutions to Problem Set 4

1. The equivalent discrete-time filter model for the sampled matched filter output is (assuming a is real)

$$
y_{k}=a I_{k-1}+\left(1+a^{2}\right) I_{k}+a I_{k+1}+\nu_{k},
$$

where $\left\{\nu_{k}\right\}$ is zero-mean Gaussian with auto-correlation function

$$
E\left[\nu_{k} \nu_{k+n}\right]=\left\{\begin{array}{lc}
\sigma^{2} a & n= \pm 1 \\
\sigma^{2}\left(1+a^{2}\right) & n=0
\end{array}\right.
$$

where σ^{2} is the power spectral density of the channel AWGN.
2. Consider the channel model $v_{k}=I_{k}+0.5 I_{k-1}+\eta_{k}$.
(a) The possible values for $I_{k}+0.5 I_{k-1}$ are 1.5, 0.5, -0.5 , and -1.5 .
(b) The possible values for $I_{k}+0.5 I_{k-1}$ are $(1.5,1.5),(1.5,0.5),(0.5,1.5)$, $(0.5,0.5),(1.5,-0.5),(1.5,-1.5),(0.5,-0.5),(0.5,-1.5),(-0.5,1.5)$, $(-0.5,0.5),(-1.5,1.5),(-1.5,0.5),(-0.5,-0.5),(-0.5,-1.5),(-1.5,-$ $0.5)$, and ($-1.5,-1.5$).

The received signal constellations in the absence of noise are shown in Figure 1.

Figure 1:

For the channel model $v_{k}=I_{k}+I_{k-1}+\eta_{k}$, we have the following answers:
(a) The possible values for $I_{k}+I_{k-1}$ are 2, 0 , and -2 .
(b) The possible values for $I_{k}+I_{k-1}$ are $(2,2),(2,0),(2,-2),(0,2),(0,0)$, $(0,-2),(-2,2),(-2,0)$, and $(-2,-2)$.

The received signal constellations in the absence of noise are shown in Figure 2.
3. (a) The state at time $k S_{k}$ is $\left\{I_{k-1} I_{k-2}\right\}$. Since binary signaling is used, the number of possible states is 4 . The trellis diagram is shown in Figure 3.
(b) Let $A_{k}=\left\{I_{k-1} I_{k-2}\right\}$ and $B_{k}=\left\{J_{k-1} J_{k-2}\right\}$. We know that $A_{l}=B_{l}$. Therefore, we have $I_{l-1}=J_{l-1}$ and $I_{l-2}=J_{l-2}$. Since $A_{l+1} \neq B_{l+1}$, we have $I_{l} \neq J_{l}$.

$$
A_{l+2}=\left\{I_{l+1} I_{l}\right\} \quad \text { and } \quad B_{l+2}=\left\{\begin{array}{ll}
J_{l+1} & J_{l}
\end{array}\right\} .
$$

Since $I_{l} \neq J_{l}$, we have $A_{l+2} \neq B_{l+2}$.
(c) From part (b), we can say that the minimum length of an error event is greater than or equal to 3 . We can get an error event of length 3 if $I_{k}=J_{k}$ for $k=l-1, l+1, l+2$ and $I_{l} \neq J_{l}$. Therefore, the minimum length of an error event is 3 .
(d) The error event is shown in Figure 4. The outputs corresponding to each branch of each path are also shown. The probability that the metric for path B is greater than the metric for path A is equal to

$$
Q\left(\frac{d}{2 \sigma}\right)
$$

where σ^{2} is the variance of the η_{k}, and

$$
d=\sqrt{(1.75+0.25)^{2}+(1.75-0.75)^{2}+(1.75-1.25)^{2}}=2.2913 .
$$

(e) Using arguments similar to part (b), the minimum possible length for an error event can be shown to be $L+1$.
4. (a) The 3-tap equalizer with coefficients c_{-1}, c_{0}, and c_{1} can be obtained by solving the following equation

$$
\left[\begin{array}{ccc}
1.25 & 0.5 & 0 \\
0.5 & 1.25 & 0.5 \\
0 & 0.5 & 1.25
\end{array}\right]\left[\begin{array}{c}
c_{-1} \\
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Therefore, we have $c_{-1}=-0.4706, c_{0}=1.1765$, and $c_{1}=-0.4706$.
(b) $q_{2}=q_{-2}=0.5 c_{1}=-0.2353$.
(c) The 5-tap equalizer with coefficients $c_{-2}, c_{-1}, c_{0}, c_{1}$, and c_{2} can be obtained by solving the following equation

$$
\left[\begin{array}{ccccc}
1.25 & 0.5 & 0 & 0 & 0 \\
0.5 & 1.25 & 0.5 & 0 & 0 \\
0 & 0.5 & 1.25 & 0.5 & 0 \\
0 & 0 & 0.5 & 1.25 & 0.5 \\
0 & 0 & 0 & 0.5 & 1.25
\end{array}\right]\left[\begin{array}{c}
c_{-2} \\
c_{-1} \\
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Therefore, we have $c_{-2}=0.2462, c_{-1}=-0.6154, c_{0}=1.2923, c_{1}=-0.6154$, and $c_{2}=0.2462$.
5. (a) The 3-tap MMSE equalizer with coefficients c_{-1}, c_{0}, and c_{1} can be obtained by solving the following equation

$$
\left[\begin{array}{ccc}
2.0625+0.125 & 1.25+0.05 & 0.25 \\
1.25+0.05 & 2.0625+0.125 & 1.25+0.05 \\
0.25 & 1.25+0.05 & 2.0625+0.125
\end{array}\right]\left[\begin{array}{c}
c_{-1} \\
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
1.25 \\
0.5
\end{array}\right]
$$

Therefore, we have $c_{-1}=-0.2722, c_{0}=0.8949$, and $c_{1}=-0.2722$.
The 5 -tap MMSE equalizer with coefficients $c_{-2}, c_{-1}, c_{0}, c_{1}$, and c_{2} can be obtained by solving the following equation

$$
\left[\begin{array}{ccccc}
2.1875 & 1.3 & 0.25 & 0 & 0 \\
1.3 & 2.1875 & 1.3 & 0.25 & 0 \\
0.25 & 1.3 & 2.1875 & 1.3 & 0.25 \\
0 & 0.25 & 1.3 & 2.1875 & 1.3 \\
0 & 0 & 0.25 & 1.3 & 2.1875
\end{array}\right]\left[\begin{array}{c}
c_{-2} \\
c_{-1} \\
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.5 \\
1.25 \\
0.5 \\
0
\end{array}\right] .
$$

Therefore, we have $c_{-2}=0.1296, c_{-1}=-0.4178, c_{0}=1.0384, c_{1}=-0.4178$, and $c_{2}=0.1296$.
(b) For the 3 -tap MMSE equalizer, we have $q_{-2}=-0.13610, q_{-1}=0.10720$, $q_{0}=0.84643, q_{1}=0.10720$, and $q_{2}=-0.13610$.
For the 5-tap MMSE equalizer, we have $q_{3}=q_{-3}=0.064800, q_{2}=q_{-2}=$ $-0.046900, q_{1}=q_{-1}=0.061750$, and $q_{0}=0.880200$.

Figure 2:

Figure 3:

Figure 4:

