EE611 Solutions to Problem Set 3

1. (a) We have

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T}} \cos \frac{2 \pi k t}{T} \cos \frac{2 \pi i}{M}-\sqrt{\frac{2 E_{s}}{T}} \sin \frac{2 \pi k t}{T} \sin \frac{2 \pi i}{M}
$$

Using $f_{1}(t)=\sqrt{\frac{2}{T}} \cos \frac{2 \pi k t}{T}$ and $f_{2}(t)=-\sqrt{\frac{2}{T}} \sin \frac{2 \pi k t}{T}$ as the two orthonormal basis functions, we get

$$
\underline{s}_{i}=\left(\sqrt{E_{s}} \cos \frac{2 \pi i}{M} \quad \sqrt{E_{s}} \sin \frac{2 \pi i}{M}\right) .
$$

Since the signals are equally likely, the optimum decision regions are obtained by using the minimum distance criterion. The signal constellation and optimum decision regions for $M=5$ are shown in Figure 1.

Figure 1: Signal Constellation and Decision Regions: Decision boundaries are shown in red.
(b) By symmetry, we have $P[\varepsilon]=P\left[\varepsilon \mid \underline{s}_{0}\right]=P\left[\underline{r} \in \bar{R}_{0} \mid \underline{s}_{0}\right]$, where \bar{R}_{0} is the complement of R_{0}. Now, consider the two regions D_{1} and D_{2} shown Figure 2. We have

$$
\begin{gathered}
D_{1} \subset \bar{R}_{0}=D_{1} \cup D_{2} \\
\Rightarrow P\left[\underline{r} \in D_{1} \mid \underline{s}_{0}\right] \leq P[\varepsilon]=P\left[\underline{r} \in D_{1} \cup D_{2} \mid \underline{s}_{0}\right] \leq P\left[\underline{r} \in D_{1} \mid \underline{s}_{0}\right]+P\left[\underline{r} \in D_{2} \mid \underline{s}_{0}\right] .
\end{gathered}
$$

Since

$$
P\left[\underline{r} \in D_{1} \mid \underline{s}_{0}\right]=P\left[\underline{r} \in D_{2} \mid \underline{s}_{0}\right]=p=Q\left(\frac{d}{2 \sigma}\right),
$$

Figure 2:
where $d=2 \sqrt{E_{s}} \sin (\pi / M)$ and $\sigma=\sqrt{N_{0} / 2}$, we get

$$
p \leq P[\varepsilon] \leq 2 p,
$$

where

$$
p=Q\left(\sqrt{\frac{2 E_{s}}{N_{0}}} \sin \frac{\pi}{M}\right)
$$

2. The optimum decision regions are shown in Figure 3.

Figure 3: Decision Regions: Decision Boundaries are shown in red.
3. (a) The equivalent low pass channel has bandwidth $W=1350 \mathrm{~Hz}$. Therefore, we have $2 W=2700 \mathrm{~Hz}$. For zero ISI, we need

$$
\frac{1}{T}<2 W
$$

The required bit rate is 9600 bits per second. If the number of bits per symbol is k, we have

$$
\frac{1}{T}=\frac{9600}{k}<2700
$$

Therefore

$$
k>\frac{96}{27}
$$

We need to choose k such that (i) it is an integer, and (ii) it is as small as possible because power efficiency of QAM decreases as k increases. Therefore, $k=4$ corresponding to a symbol rate of 2400 symbols per second is the best possible choice. For $k=4$, a 16-QAM constellation is used.
(b) The bandwidth of a square-root raised cosine pulse with roll-off factor β is $(1+\beta) / 2 T$. Therefore, we have

$$
\frac{1+\beta}{T}=2700 \Rightarrow 1+\beta=\frac{9}{8} \Rightarrow \beta=0.125
$$

4. (a) The raised cosine spectrum is real and given by

$$
X(f)= \begin{cases}T & |f|<\frac{1-\beta}{2 T} \\ \frac{T}{2}\left[1+\cos \left\{\frac{\pi T}{\beta}\left(|f|-\frac{1-\beta}{2 T}\right)\right\}\right] & \frac{1-\beta}{2 T} \leq|f| \leq \frac{1+\beta}{2 T} \\ 0 & |f|>\frac{1+\beta}{2 T}\end{cases}
$$

We want to express $X(f)$ in the range $0 \leq f \leq \frac{1}{T}$ as $G_{1}(f)+G_{2}(f)$, where $G_{1}(f)$ is a rectangular function and $G_{2}(f)$ is an odd function around $\frac{1}{2 T}$. It can be done in the following manner (See Figure 4):

$$
G_{1}(f)=\frac{T}{2} \text { for } 0 \leq f \leq \frac{1}{T}
$$

and

$$
G_{2}(f)= \begin{cases}\frac{T}{2} & 0 \leq f \leq \frac{1-\beta}{2 T} \\ \frac{T}{2} \cos \left\{\frac{\pi T}{\beta}\left(f-\frac{1-\beta}{2 T}\right)\right\} & \frac{1-\beta}{2 T}<f<\frac{1+\beta}{2 T} \\ -\frac{T}{2} & \frac{1+\beta}{2 T} \leq f \leq \frac{1}{T}\end{cases}
$$

(b) Choose $G_{1}(f)$ as in part (a). Choose $G_{2}(f)$ as follows:

$$
G_{2}(f)= \begin{cases}\frac{T}{2} & 0 \leq f \leq \frac{1-\beta}{2 T} \\ T\left\{\frac{T}{\beta}\left(-f+\frac{1}{2 T}\right)\right\} & \frac{1-\beta}{2 T}<f<\frac{1+\beta}{2 T} \\ -\frac{T}{2} & \frac{1+\beta}{2 T} \leq f \leq \frac{1}{T}\end{cases}
$$

5. The Fourier transform of $x(t)$ can be determined as

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} e^{-\pi a^{2} t^{2}} e^{-j 2 \pi f t} d t \\
& =e^{-\frac{\pi f^{2}}{a^{2}}} \int_{-\infty}^{\infty} e^{-\pi a^{2}\left(t+j \frac{f}{\left.a^{2}\right)^{2}}\right.} d t \\
& =\frac{1}{a} e^{-\frac{\pi f^{2}}{a^{2}}}
\end{aligned}
$$

Setting $x(T)=0.01$ gives $a T=\sqrt{\frac{2 \ln 10}{\pi}}$.
$\frac{X(W)}{X(0)}=0.01$ implies $W=\frac{2 \ln 10}{\pi T}=1.46587 \frac{1}{T}$.
Raised-cosine spectrum has bandwidth $W=\frac{1+\beta}{2 T}=\frac{1}{T}$ for $\beta=1$.
6. Given the expression for $x_{r c}(t)$, it can be easily seen that $x(0)=1$. Therefore, $\int_{-\infty}^{\infty} X_{r c}(f) d f=1$. Given the raised cosine spectrum expression $X_{r c}(f)$ in frequency domain as follows, we can also evaluate the integral easily and show that it is 1 .

$$
\begin{gathered}
X_{r c}(f)= \begin{cases}T & \begin{array}{l}
0 \leq|f| \leq \frac{1-\beta}{2 T} \\
\frac{T}{2}\left\{1+\cos \left[\frac{\pi T}{\beta}\left(|f|-\frac{(1-\beta)}{2 T}\right)\right]\right\} \\
0
\end{array} \\
\frac{1-\beta}{2 T} \leq|f| \leq \frac{1+\beta}{2 T} \\
|f|>\frac{1+\beta}{2 T}\end{cases} \\
\int_{-\infty}^{\infty} X_{r c}(f) d f=\int_{-\frac{(1+\beta)}{2 T}}^{-\frac{(1-\beta)}{2 T}} X_{r c}(f) d f+\int_{-\frac{(1-\beta)}{2 T}}^{\frac{(1-\beta)}{2 T}} X_{r c}(f) d f+\int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} X_{r c}(f) d f
\end{gathered}
$$

- Terms 1 and 3 on the right side are equal and can be evaluated as follows.

$$
\begin{aligned}
\int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} X_{r c}(f) d f & =\int_{\frac{(1-\beta)}{2 T}}^{\frac{(1+\beta)}{2 T}} \frac{T}{2}\left\{1+\cos \left[\frac{\pi T}{\beta}\left(f-\frac{1-\beta}{2 T}\right)\right]\right\} d f \\
\int_{-\frac{(1+\beta)}{2 T}}^{-\frac{(1-\beta)}{2 T}} X_{r c}(f) d f & =\int_{-\frac{(1+\beta)}{2 T}}^{-\frac{(1-\beta)}{2 T}} \frac{T}{2}\left\{1+\cos \left[\frac{\pi T}{\beta}\left(-f-\frac{(1-\beta)}{2 T}\right)\right]\right\} d f \\
(\text { by setting } \alpha=-f) & =\int_{\frac{(1-\beta)}{2 T}}^{\frac{(1+\beta)}{2 T}} \frac{T}{2}\left\{1+\cos \left[\frac{\pi T}{\beta}\left(\alpha-\frac{(1-\beta)}{2 T}\right)\right]\right\} d \alpha \\
& =\int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} X_{r c}(f) d f \\
2 \int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} X_{r c}(f) d f & =\int_{\frac{(1-\beta)}{2 T}}^{\frac{(1+\beta)}{2 T}}\left\{T+T \cos \left[\frac{\pi T}{\beta}\left(f-\frac{1-\beta}{2 T}\right)\right]\right\} d f \\
& =T\left(\frac{(1+\beta)}{2 T}-\frac{(1-\beta)}{2 T}\right)+T \int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} \cos \left(\frac{\pi T f}{\beta}-\frac{(1-\beta) \pi}{2 \beta}\right) d f
\end{aligned}
$$

$$
\begin{aligned}
(\text { setting } \alpha= & \left.\frac{\pi T}{\beta}\left(f-\frac{(1-\beta)}{2 T}\right), \text { we get limits } \alpha=0 \text { to } \pi\right) \\
& =\beta+T \int_{0}^{\pi} \cos \alpha d \alpha\left(\frac{\beta}{\pi T}\right) \\
& =\beta+\frac{\beta}{\pi} \int_{0}^{\pi} \cos \alpha d \alpha=\beta+0=\beta
\end{aligned}
$$

- Term 2 is evaluated as follows.

$$
\int_{\frac{-(1-\beta)}{2 T}}^{\frac{(1-\beta)}{2 T}} X_{r c}(f) d f=T\left(\frac{1-\beta}{2 T}\right) 2=1-\beta
$$

- Therefore, we have

$$
\int_{-\infty}^{\infty} X_{r c}(f) d f=1-\beta+\beta=1
$$

7. Assuming $X_{r c}(f)$ to be defined as in the previous problem, the variance of the filtered noise will be

$$
\frac{N_{0}}{2} \int_{-\infty}^{\infty} X_{r c}(f) d f=\frac{N_{0}}{2}
$$

8. Bandwidth of raised cosine spectrum with roll-off factor of β is $\frac{1}{2 T}(1+\beta)$.

For zero ISI, we want $\frac{1}{T}(1+\beta) \leq 2 W \Rightarrow \frac{1}{T} \leq \frac{2 W}{1+\beta} \quad$ where $2 W=4 k H z$
Since $\beta \geq 0.5$, we have $\frac{1}{T} \leq \frac{2 W}{1.5}=\frac{8}{3} k H z=2.667 \mathrm{kHz}$
Since the required bit rate $=9600 \mathrm{bps}$, and we want to choose as few bits per symbol as possible, we can select 16 -QAM at a symbol rate of $\frac{9600}{4}=2400$ symbols per second <2.667 ksps.

Figure 4:

