EE611 Problem Set 2

- 1. One of three equally likely messages is communicated over a vector channel which adds a (different) statistically independent zero-mean Gaussian random variable with variance $N_0/2$ to each transmitted vector component. Assume that the transmitter uses the signal vectors $\underline{s}_k = (\cos \theta_k \quad \sin \theta_k)$, where θ_k takes values 0, $2\pi/3$, and $4\pi/3$ for the three messages.
 - (a) Determine the minimum distance between any two points in the signal constellation.
 - (b) Sketch the decision regions for the optimum receiver that minimizes the probability of symbol error.
 - (c) Express the average probability of symbol error, P_e , in terms of the conditional error probabilities given the message index k, $P_{e|k}$.
 - (d) Show that the probability of symbol error is upper bounded by $2Q\left(\sqrt{\frac{3}{2N_0}}\right)$.
- 2. Consider a communication system model where two received outputs, r_1 and r_2 , are available for decision making, as shown below:

$$r_1 = s + n_1$$
 and $r_2 = n_1 + n_2$.

Assume n_1 , n_2 are i. i. d. Gaussian random vectors with each element having variance $\frac{N_0}{2}$. Assume equally likely symbols $s_0 = \sqrt{E_s}$ and $s_1 = -\sqrt{E_s}$ are transmitted. Assume that s, n_1 and n_2 are independent.

- (i) Determine whether r_2 is irrelevant.
- (ii) Determine the optimum decision rule and the probability of symbol error.
- (iii) Repeat part (ii), if

$$r_1 = s + n_1$$
 and $r_2 = 2s + n_2$.

- 3. Let r = s + n, where r is the received signal, s is the transmitted signal, and n is Gaussian, with zero mean. If one of two equally likely messages is transmitted using $s_0 = -2$, and $s_1 = 2$, the optimum receiver yields $P[\varepsilon] = 0.01$.
 - (i) What is the minimum attainable probability of error P[ε]_{min}, when (a) three equally likely messages are transmitted using the signals s₀ = −4, s₁ = 0, s₂ = 4? (b) when four equally likely messages are transmitted using the signals s₀ = −4, s₁ = 0, s₂ = 4, s₃ = 8?
 - (ii) How do the answers to part (i) change if it is known that E[n] = 1 rather than 0?
- 4. One of the four equally likely messages is to be communicated over a vector channel which adds a (different) statistically independent zero-mean Gaussian random variable with variance $\frac{N_0}{2}$ to each transmitted vector component. Assume that the transmitter uses the signal vectors $\mathbf{s}_i = (\cos[\frac{\pi}{4}(2i+1)], \sin[\frac{\pi}{4}(2i+1)])$, for $i \in \{0, 1, 2, 3\}$ and express the probability of error, $P[\varepsilon]$, produced by an optimum receiver in terms of the function $Q(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx.$
- 5. Express the minimum probability of error, $P[\varepsilon]_{min}$, in terms of $Q(\alpha)$ when the signal set given in Figure 1 is used to communicate one of eight equally likely messages over a channel disturbed by additive white Gaussian noise with power spectral density $\frac{N_0}{2}$.

Figure 1: