- 1) group under modulo-11 addition {0,1,2,3,-...8,9,10}
- Group under modulo-11 multiplication £1,2,3,...

\$1,2, m-1}

Since mis not a prime, it can be factored as the product of two integers 'a' and 'b'.

with 1 < a, b < m, it is clear that both a and b m = a.b

are in the set {1,2, ... m-1}. consider the modulo-m of a eb

and modulo m

m modulo m

since 'o' 'le not an element of set &1,2, muz the set as not closed under the modulo-m multiplication and hence can not be a group.

691/4/2 (8 -0/1/1000 10/12) \18 - 161/10 } modulo-4 multiplication nultiplicative group under Qs {1,2,3...10}

An element in a group as called generator of that, of all other elements of that group can be generated by raising it to different powers and taking modulo-11. operation

Me can check that elements

2,6,7,8 satisfy above condition

2 18 8 3 8 4 2 8 12, 5, 1 6

for.

14+1 = {8,12,5,1}

2#H 3 } 8,11,10,2 pv

3+H = {11,10,2,3}

4*H = 26,9,7,47V

5+44 = {1,8,12,5}

744 = 5 { 4, 6, 9, 7 4

8445 { 12, 5, 1, 8} 9#4 = 37,4,6,97 10#4 5 8 2, 3, 11,0106 114 11 = {10, 2,3,11} 1244 5 {5,124

- in H. condition (ii) says that every element of H has an inverse in H. conditions (i) and (ii) ensure that the identity element of G is also in H. Because the elements in H are elements in G, the associative condition on * holds automatically. Hence, H satisfies all the conditions of a group and is a subgroup of G.
- i) The proof is based on the fact that all the elements in the subgroup it are distinct. Consider the Coset a*H = {a*h: hell?

 with a e.g. Suppose two elements, say a*h and a*h', in a*H

 are identical, where h and h' are two distinct elements in H.

 Let a' denote the inverse of a with respect to the binary operation *. Then,

a'*(a*h) = a'*(a*h')

(a'*a)*h = (a'*a) *h',

e*h= e*h'.

extination.

This sheruit is a contradiction to the fact that all the elements of H are distinct. Therefore no two elements in a coset are identical.

ii) Let a*H and b*H be two distinct (osets of H, with a and b in G. Let a*b a*h and b*h be two elements in a*H and b*H, nespectively. Suppose

a*h = b*h'. Let h' be the inverse of h. Then

(a*h) * h' = (b* h') * h'

a* (h*h') = (+ + h')

a*e = b* \$1)

a = b* h"

where h" = h' + h' is an element It. The equality a = b + h' implies that

a* H = (b* h") * H.

= { (b*h') * h: hEH3

= \ \ b* (h" *h) : he H }

= { b* h" : h"' \in 14 }

= b * H

This segult says that a* H and b* H age identical which is a contradiction to the given condition that a* H and b* H are two distinct cosets of H. Therefore, no two elements in two distinct cosets of H are identical.

Property I For every element a in a field, $a \cdot 0 = 0 \cdot a = 0$.

Proof. First, we note that

$$a = a \cdot 1 = a \cdot (1+0) = a + a \cdot 0.$$

Adding -a to both sides of the preceding equality, we have

$$-a + a = -a + a + a \cdot 0$$
$$0 = 0 + a \cdot 0$$
$$0 = a \cdot 0.$$

Similarly, we can show that $0 \cdot a = 0$. Therefore, we obtain $a \cdot 0 = 0 \cdot a = 0$. Q.E.D.

Property II For any two nonzero elements a and b in a field, $a \cdot b \neq 0$.

Proof. This is a direct consequence of the fact that the nonzero elements of a field are closed under multiplication. Q.E.D.

Property III $a \cdot b = 0$ and $a \neq 0$ imply that b = 0.

Proof. This is a direct consequence of Property II.

Q.E.D.

Property IV For any two elements a and b in a field,

$$-(a \cdot b) = (-a) \cdot b = a \cdot (-b).$$

Proof. $0 = 0 \cdot b = (a + (-a)) \cdot b = a \cdot b + (-a) \cdot b$. Therefore, $(-a) \cdot b$ must be the additive inverse of $a \cdot b$, and $-(a \cdot b) = (-a) \cdot b$. Similarly, we can prove that $-(a \cdot b) = a \cdot (-b)$. $\mathbb{Q}.\mathbb{E}.\mathbb{D}$.

Property V For $a \neq 0$, $a \cdot b = a \cdot c$ implies that b = c.

Proof. Because a is a nonzero element in the field, it has a multiplicative inverse, a^{-1} . Multiplying both sides of $a \cdot b = a \cdot c$ by a^{-1} , we obtain

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot c)$$
$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$
$$1 \cdot b = 1 \cdot c.$$

9 G= {0,1,2,3, -. 31} under modulo-82 addition H = {0, 4, 8, 12, 16, 20, 24, 28} taet, > aeq, clearly HCG? HRs a subset of G? We know that a subset (H) of a group becomes subgroup of it satiesties (P) closed under the operation defined on 6, For any element of ant, the inverse of 'a' es also en H. modulo-32 Closed under KILE 20,1,2. 7} AK, AE EH consider (4K+4L) modulo 32 = A{CK+U) mod 8} so H le closed under modulo-32 Lor inverse K & Soil, 2. . 7} Let AKEH Enveuse 93 32-4K 4(8-K) E+1, so anverse also exists in 14, 50 H Sorms a subgroup in 6

Question-11: Let S be a nonempty subset of a vector space V over a field F. Then, S is a subspace of V if the following conditions are satisfied:

- i. For any two vectors u and v in S, u + v is also a vector in S.
- ii. For any element a in F and any vector u in S, a · u is also in S.

Proof. Conditions (i) and (ii) simply say that S is closed under vector addition and scalar multiplication of V. Condition (ii) ensures that for any vector v in S its additive inverse $(-1) \cdot v$ is also in S. Then, $v + (-1) \cdot v = 0$ is also in S. Therefore, S is a subgroup of V. Because the vectors of S are also vectors of V, the associative and distributive laws must hold for S. Hence, S is a vector space over F and is a subspace of V.

 $\begin{array}{c}
2x4 + x^{2} - 2 \\
3x^{2} + 1
\end{array}$ $\begin{array}{c}
2x4 + x^{2} - 2 \\
6x^{6} + 2x4 \\
\hline
-5x^{6} - 2x^{4} + 3x + 2 \\
\hline
-5x^{4} - x^{2} + 3x + 2 \\
\hline
-6x^{2} - 2 \\
\hline
-6x^{2} - 2 \\
\hline
-6x^{2} + 3x + 4
\end{array}$ quotient $\begin{array}{c}
2x + 4 \\
\hline
-3x^{2} + 3x + 4
\end{array}$ quotient

GF(8) using 23+2+1,

(a) say 'a' is a root of 23+x+1

 $\Rightarrow \alpha^3 + \alpha + 1 = 0$ $\Rightarrow \alpha^3 = 1 + \alpha$

26 101

(b) Let 'B' be root of 23 + 22+1

B5 1 1 0 B6 0 1 1

now let us find which power of 'B' satisfies the First equation $\chi^3 + 2 + 1$,

we can see that $(\beta^3)^3 + \beta^3 + 1 \Rightarrow \beta^2 + \beta^3 + 1 \Rightarrow \beta^3 +$

50 p³ les a root of x³exel, d > 13 is an esomosphism between the two fields He know that,

two fields F &G are said to be asomorphic

of there a one to one mapping from

F onto G, which preserves addition and

multiplication

element 1 + element α^2 = element α^6 8ubstitution $\alpha = 3^3$ $1+(3^3)^2 = (3^3)^6$ $\Rightarrow 1+3^6 = 318$ $\Rightarrow 1+3^7 = 34.34$ $\Rightarrow 1+3^7 = 34.34$ $\Rightarrow 1+3^7 = 34.34$

PEGICAN)

$$\Rightarrow g^{2^m-1}=1$$

given that $g^2=B$
 $\Rightarrow g^{2^m-1}=1$
 $\Rightarrow g^{2^m$

[Ihm 2.9: Let à be and a nonzero element in a divides GF(2)] Let n be the order of a. Then n divides 2-1.

```
Problem set-2
```

GF(25) given by Table 2.10. B= 25 The Dasider the Galois field

Con Jugates of

$$\beta^2 = \alpha^{10}$$
, $\beta^2 = \alpha^{20}$, $\beta^2 = \alpha^{18}$

polynomial of B= as is then The minimal

$$\phi(x) = (x + \alpha^5) (x + \alpha^{10}) (x + \alpha^{20}) (x + \alpha^9) (x + \alpha^{18})$$

$$\phi(x) = x^5 + x^4 + x^2 + x + 1$$

Let
$$\beta = \alpha^{\frac{7}{4}}$$
 $\beta^{2} = \alpha^{\frac{14}{4}}, \quad \beta^{2^{\frac{2}{4}}} = \alpha^{\frac{24}{4}}, \quad \beta^{2^{\frac{3}{4}}} = \alpha^{\frac{25}{4}}, \quad \beta^{2^{\frac{4}{4}}} = \alpha^{\frac{19}{4}}$

poly nomial of B= a7 is then The minimal

$$\phi(x) = (x + \alpha^7) (x + \alpha^{14}) (x + \alpha^{28}) (x + \alpha^{19})$$

$$\phi(x) = x^5 + x^3 + x^2 + x 1$$

let us say be GF(q) and order(b)=n, since be GF(9) & b not anity n < 9-1,1 We know that order divides 9-1 > n/9-1, Given that '9-1' le prime. 80 N=9-1,

so every nonzero element of (4F(2))
not exual to the unit element 18 primitive.

of love po soly bloods who is they so it pt south