EE5160: Error Control Coding Problem Set 8

1. Show that for a graph $\mathcal{G}=(V, E)$ with m edges and n vertices, $v_{1}, v_{2}, \ldots, v_{n}$, the sum of degrees of vertices is equal to $2 m$, i.e.,

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=2 m
$$

Using the above result, show that the number of vertices with odd degree is even.
2. Show that if a bipartite graph contains cycles, then all cycles have even lengths.
3. Draw the Tanner graph corresponding the parity check matrix given below.

$$
\mathbf{H}=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Find the total number of edges in the graph.
4. Let a be a binary r.v. and let $p_{1}=\operatorname{Pr}(a=1)$. Show that

$$
p_{1}=\frac{1}{1+\exp (-L(a))}
$$

and

$$
p_{1}=\frac{1}{2}+\frac{1}{2} \tanh \left(\frac{L(a)}{2}\right)
$$

where $L(a)=\ln \left(p_{0} / p_{1}\right)$.
5. (Simulation) Simulate SPA decoding of the $(7,4)$ Hamming code on the binary-input AWGN channel and plot the bit error probability P_{b} versus $E_{b} / N_{0}(\mathrm{~dB})$. Use the following \mathbf{H} matrix for the $(7,4)$ Hamming code to design your SPA decoder:

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Simulate an exhaustive-search maximum-likelihood decoder (i.e., a minimum Euclideandistance decoder) on the binary-input AWGN channel and compare its P_{b} versus E_{b} / N_{0} curve with that of the SPA decoder.

