EE5160: Error Control Coding
 Problem Set 7

1. Find the power series $s(D)$ for the rational function

$$
\frac{a(D)}{b(D)}=\frac{1+D+D^{2}}{1+D+D^{3}}
$$

and note that, after a transient, its coefficients are periodic. Show that $a(D)=b(D) s(D)$.
2. Find $G_{\text {sys }}(D), H_{\text {sys }}(D), G_{\text {poly }}(D)$ and $H_{\text {poly }}(D)$ for the rate- $2 / 3$ convolutional-code generator matrix given by

$$
G(D)=\left[\begin{array}{ccc}
\frac{1+D}{1+D+D^{2}} & 1+D & 0 \\
1 & \frac{1}{1+D} & \frac{D}{1+D^{2}}
\end{array}\right]
$$

3. Find the Type I realization of the transfer function

$$
g_{i j}(D)=\frac{a_{0}+a_{1} D+\ldots+a_{m} D^{m}}{b_{0}+b_{1} D+\ldots+b_{m} D^{m}}
$$

To do so write $c^{(j)}(D)$ as

$$
c^{(j)}(D)=\left(u^{(i)}(D) \cdot \frac{1}{b(D)}\right) \cdot a(D)
$$

Then sketch the direct implementation of the leftmost "filtering" operation $v(D)=$ $u^{(i)}(D) \cdot 1 / b(D)$, which can be determined from the difference equation

$$
v_{t}=u_{t}^{(i)}-b_{1} v_{t-1}-b_{2} v_{t-2}-\cdots-b_{m} v_{t-m}
$$

Next, sketch the direct implementation of the second filtering operation $c^{(j)}(D)=v(D) a(D)$, which can be determined from the difference equation

$$
c_{t}^{(j)}=a_{0} v_{t}^{(i)}+a_{1} v_{t-1}^{(i)} \cdots+a_{m} v_{t-m}^{(i)}
$$

Finally, sketch the two "filters" in cascade, the $1 / b(D)$ filter followed by the $a(D)$ filter (going from left to right), and notice that the m delay (memory) elements may be shared by the two filters.
4. Consider the rate- $2 / 3$ convolutional code with

$$
G(D)=\left[\begin{array}{ccc}
\frac{1+D}{1+D+D^{2}} & 0 & 1+D \\
1 & \frac{1}{1+D} & \frac{D}{1+D^{2}}
\end{array}\right]
$$

Let the input for the encoder $\mathrm{G}(\mathrm{D})$ be $u(D)=\left[\begin{array}{cc}1 & 1+D\end{array}\right]$ and find the corresponding codeword $c(D)=\left[\begin{array}{ccc}c_{1}(D) & c_{2}(D) & c_{3}(D)\end{array}\right]$. Find the input which yields the same codeword when the encoder is given by $G_{\text {sys }}(D)$. Repeat for $G_{\text {poly }}(D)$.
5. Consider a rate- $2 / 3$ convolutional code with

$$
G_{\text {poly }}(D)=\left[\begin{array}{ccc}
1+D & 0 & 1 \\
1+D^{2} & 1+D & 1+D+D^{2}
\end{array}\right] .
$$

Show that the memory required for the Type I and TypeII realizations of $G_{\text {poly }}(D)$ is $\mu=3$ and $\mu=6$, respectively. Show that

$$
G_{s y s}(D)=\left[\begin{array}{ccc}
1 & 0 & \frac{1}{1+D} \\
0 & 1 & \frac{D^{2}}{1+D}
\end{array}\right],
$$

and that the memory required for its Type I realization is $\mu=3$. Finally, show that the Type II realization of $G_{\text {sys }}(D)$ requires only $\mu=2$. Thus, the Type II realization of $G_{\text {sys }}(D)$ is the minimal encoder for rate $k / k+1$ convolutional codes.
6. Show that

$$
\max (x, y)=\log \left(\frac{e^{x}+e^{y}}{1+e^{-|x-y|}}\right) .
$$

Hint: First suppose $x>y$.
7. Draw the state diagram for the rate- $1 / 2$ encoder described by

$$
u(D)=\left[\begin{array}{ll}
1+D+D^{2} & 1+D^{2}
\end{array}\right]
$$

Find the input output weight enumerator (IO-WE)

$$
A^{\prime}(I, W)=\sum_{i, w} A_{i, w}^{\prime} I^{i} W^{w}
$$

where $A_{i, w}^{\prime}$ is the number of weight- w paths, corresponding to weight- i encoder inputs, that diverge from the all-zeros trellis path one time in L trellis stages.
8. (Optional) Assuming the BI-AWGNC, simulate Viterbi decoding of the rate-1/2 convolutional code whose encoder matrix is given by

$$
G(D)=\left[\begin{array}{ll}
1+D^{2}+D^{3}+D^{4} & 1+D+D^{4}
\end{array}\right] .
$$

Plot the bit error rate from $P_{b}=10^{-1}$ to $P_{b}=10^{-6}$. Repeat for the BCJR decoder and comment on the performance of the two decoders.

