EE5160: Error Control Coding Problem Set 2

1. a) Construct $\mathrm{GF}(8)$ using $p(X)=X^{3}+X+1$.
b) Construct GF (8) using $p(X)=X^{3}+X^{2}+1$.
c) Show that the two fields obtained in a) and b) are isomorphic.
2. Let β be a nonzero element of $\operatorname{GF}\left(q^{m}\right)$. Let e be the smallest non-negative integer such that $\beta^{q^{e}}=\beta$. Prove that e divides m.
3. Prove that the extension field $\mathrm{GF}\left(p^{m}\right)$ of the prime field $\mathrm{GF}(p)$ is an m-dimensional vector space over $\operatorname{GF}(p)$.
4. Consider the Galois field $\operatorname{GF}\left(2^{5}\right)$ given by Table 2.10. Find the minimum polynomials of α^{5} and α^{7}.
5. If $q-1$ is a prime, prove that every nonzero element of $\operatorname{GF}(q)$ not equal to the unit element 1 is primitive.
