EE5160: Error Control Coding Problem Set 2

- a) Construct GF(8) using p(X) = X³ + X + 1.
 b) Construct GF(8) using p(X) = X³ + X² + 1.
 c) Show that the two fields obtained in a) and b) are isomorphic.
- 2. Let β be a nonzero element of $GF(q^m)$. Let e be the smallest non-negative integer such that $\beta^{q^e} = \beta$. Prove that e divides m.
- 3. Prove that the extension field $GF(p^m)$ of the prime field GF(p) is an *m*-dimensional vector space over GF(p).
- 4. Consider the Galois field GF(2⁵) given by Table 2.10. Find the minimum polynomials of α^5 and α^7 .
- 5. If q-1 is a prime, prove that every nonzero element of GF(q) not equal to the unit element 1 is primitive.