EE5160: Error Control Coding Problem Set 1

1. Construct the group under modulo-11 addition.
2. Construct the group under modulo-11 multiplication.
3. Let m be a positive integer. If m is not a prime, prove that the set $\{1,2, \ldots, m-1\}$ does not form a group under modulo- m multiplication.
4. Find all the generators of the multiplicative group constructed in Problem 2.
5. Find a cyclic subgroup of the multiplicative group constructed using the prime integer 13 and give its cosets.
6. Let G be a group under the binary operation *. let H be a non empty subset of G. Prove that H is a subgroup of G if the following conditions hold.
i. H is closed under the binary operation * .
ii. For any element a in H, the inverse of a is also in H.
7. Let H be a subgroup of a group G with binary binary operation *. Prove that
i. No two elements in a coset of H are identical.
ii. No two elements in two different cosets of a subgroup H of a group G are identical.
8. Prove the following properties of a field F.
i. For every element a in $F, a .0=0 . a=0$.
ii. For any two nonzero elements a and b in $F, a . b \neq 0$.
iii. For two elements a and b in $F, a . b=0$ implies that either $a=0$ or $b=0$.
iv. For $a \neq 0, a . b=a . c$ implies that $b=c$.
v. For any two elements a and b in $F,-(a \cdot b)=(-a) \cdot b=a \cdot(-b)$.
9. Consider the integer group $G=\{0,1,2 \ldots, 31\}$ under modulo- 32 addition. Show that H $=\{0,4,8,12,16,20,24,28\}$ forms a subgroup of G. Decompose G into cosets with respect to H (or modulo H).
10. Prove the following properties of a vector space V over a field F.
i. Let 0 be the zero element of F. For any vector \mathbf{v} in $V, 0 . \mathbf{v}=\mathbf{0}$.
ii. For any element a in $F, a .0=\mathbf{0}$.
iii. For any element a in F and any vector \mathbf{v} in $V,(-a) \cdot \mathbf{v}=\mathbf{a} \cdot(-\mathbf{v})=-(\mathbf{a} . \mathbf{v})$.
11. Let S be a nonempty subset of a vector space V over a field F. Prove that S is a subspace of V if the following conditions are satisfied:
i. For any two vectors \mathbf{u} and \mathbf{v} in $S, \mathbf{u}+\mathbf{v}$ is also a vector in S.
ii. For any element a in F and any vector \mathbf{u} in $S, a . \mathbf{u}$ is also in S.
12. Let m be a positive integer. Prove that the set $\{0,1, \ldots, m-1\}$ forms a ring under modulo- m addition and multiplication.
13. Let $a(X)=3 X^{2}+1$ and $b(X)=X^{6}+3 X+2$ be two polynomials over the prime field GF(5). Divide $b(X)$ by $a(X)$ and find the quotient and remainders of the division.
