EE5130: Detection and Estimation Theory Problem Set 5

- 1. (Poor III.F.8) Suppose we have observations $Y_k = N_k + \theta S_k$, k = 1, ..., n, where $\underline{N} \sim \mathcal{N}(\underline{0}, \mathbf{I} \text{ and where } S_1, ..., S_n \text{ are i.i.d. random variables, independent of } \underline{N}$, and each taking on the values +1 and -1 with equal probabilities of 1/2.
 - (a) Find the likelihood ratio for testing $H_0: \theta = 0$ versus $H_1: \theta = A$, where A is a known constant.
 - (b) For the case n = 1, find the Neyman-Pearson rule and corresponding detection probability for false-alarm probability $\alpha \in (0, 1)$, for the hypotheses of (a).
 - (c) Is there a UMP test of $H_0: \theta = 0$ versus $H_1: \theta \neq 0$ in this model? If so, why and what is it? If not, why not? Consider the cases n = 1 and n > 1 separately.
- 2. (Poor III.F.13) Consider the model $Y_k = \theta^{1/2} s_k R_k + N_k$, k = 1, ..., n, where $s_1, s_2, ..., s_n$ is a known signal sequence, $\theta \ge 0$ is a constant, and $R_1, R_2, ..., R_n, N_1, N_2, ..., N_n$ are i.i.d. $\mathcal{N}(0, 1)$ random variables.
 - (a) Consider the hypothesis pair $H_0: \theta = 0$ versus $H_1: \theta = A$, where A is a known positive constant. Describe the structure of the Neyman-Pearson detector.
 - (b) Consider now the hypothesis pair H_0 : $\theta = 0$ versus H_1 : $\theta > 0$. Under what conditions on s_1, s_2, \ldots, s_n does a UMP test exist?
 - (c) For the hypothesis pair in part (b) with s_1, s_2, \ldots, s_n general, is there a locally optimum detector? If so, find it. If not, describe the generalized likelihood ratio test.
- 3. (Poor III.F.14 (a)) Consider the following hypothesis about a sequence Y_1, Y_2, \ldots, Y_n , of real observations: $H_0: Y_k = N_k, k = 1, \ldots, n$, versus $H_1: Y_k = N_k + \Theta s_k, k = 1, 2, \ldots, n$, where N_1, N_2, \ldots, N_n is a sequence of i.i.d. $\mathcal{N}(0, \sigma^2)$ random variables; where s_1, s_2, \ldots, s_n is a known signal sequence satisfying $\underline{s}^T \underline{s} = 1$; and where Θ is a $\mathcal{N}(\mu, v^2)$ random variable, independent of N_1, N_2, \ldots, N_n . Show that the critical region for Neyman-Pearson testing between these two hypotheses is of the form

$$\Gamma_1 = \left\{ \mu \underline{s}^T \underline{y} + \frac{v^2}{2\sigma^2} |\underline{s}^T \underline{y}|^2 > \tau' \right\},\,$$

where τ' is an appropriately chosen threshold. [*Hint:* The covariance matrix of <u>Y</u> equals $\sigma^2 \mathbf{I} + v^2 \underline{s} \underline{s}^T$ under hypothesis H_1 .]

4. (Poor III.F.21) Compute the Chernoff bound for the binary symmetric channel with equal priors, and compare it to the actual minimum error probability.