EE5130: Detection and Estimation Theory Problem Set 1

1. (Poor II.F.1) Find the minimum bayes risk $V\left(\pi_{0}\right)$ for the binary channel of example II.B. 1 (discussed in class), where

$$
p_{j}(y)= \begin{cases}\lambda_{j}, & y \neq j \\ \left(1-\lambda_{j}\right), & y=j\end{cases}
$$

Sketch $V\left(\pi_{0}\right)$ versus π_{0}. If $\lambda_{0}=\lambda_{1}$, sketch $V\left(\pi_{0}\right)$ versus π_{0}.
2. (Poor II.F.2) Suppose Y is a random variable that, under hypothesis H_{0}, has pdf

$$
p_{0}(y)= \begin{cases}\frac{2}{3}(y+1), & 0 \leq y<1 \\ 0, & \text { otherwise }\end{cases}
$$

and under hypothesis H_{1}, has pdf

$$
p_{1}(y)= \begin{cases}1, & 0 \leq y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the Bayes rule and minimum Bayes risk for testing H_{0} versus H_{1} with uniform costs and equal priors.
3. (Poor II.F.3) Repeat problem 2 for the situation in which p_{j} is given instead by

$$
\begin{aligned}
p_{j}(y) & =\frac{j+1}{2} e^{-(j+1)|y|}, \mathrm{y} \in \mathbb{R}, \mathrm{j}=0,1 \\
C_{i j} & =\left\{\begin{array}{l}
0, \quad \text { if } i=j \\
1, \quad \text { if } i=1 \text { and } j=0 \\
\frac{3}{4}, \quad \text { if } i=0 \text { and } j=1
\end{array}\right. \\
\pi_{0} & =\frac{1}{4} \text { and } \pi_{1}=\frac{3}{4}
\end{aligned}
$$

4. (Poor II.F.4) Repeat problem 2 for the situation in which p_{0} and p_{1} are given instead by

$$
\begin{aligned}
& p_{0}(y)= \begin{cases}e^{-y}, & y \geq 0 \\
0, & y<0\end{cases} \\
& p_{1}(y)= \begin{cases}\sqrt{\frac{2}{\pi}} e^{-\frac{y^{2}}{2}}, & y \geq 0 \\
0, & y<0\end{cases}
\end{aligned}
$$

Consider prior probabilities π_{0} and π_{1}.

