EE 511 Solutions to Problem Set 8

1. $E\left[Y_{t}\right]=E\left[X_{t}\right] \cos 2 \pi f_{c} t . E\left[Y_{t}\right]$ is periodic with period $1 / f_{c}$.

$$
R_{Y}(t, t+\tau)=E\left[X_{t+\tau} \cos 2 \pi f_{c}(t+\tau) X_{t} \cos 2 \pi f_{c} t\right]=\frac{R_{X}(\tau)}{2}\left[\cos 2 \pi f_{c} \tau+\cos 2 \pi f_{c}(2 t+\tau)\right]
$$

$R_{Y}(t, t+\tau)$ is periodic with period $1 /\left(2 f_{c}\right)$.
Therefore, Y_{t} is wide-sense cyclostationary with period $1 / f_{c}$.
$E\left[Z_{t}\right]=E\left[X_{t}\right] E\left[\cos \left(2 \pi f_{c} t+\Theta\right)\right]=0$.

$$
\begin{aligned}
R_{Z}(t, t+\tau) & =E\left[X_{t+\tau} \cos \left(2 \pi f_{c}(t+\tau)+\Theta\right) X_{t} \cos \left(2 \pi f_{c} t+\Theta\right)\right] \\
& =\frac{R_{X}(\tau)}{2}\left[\cos 2 \pi f_{c} \tau+E\left[\cos \left(2 \pi f_{c}(2 t+\tau)+2 \Theta\right)\right]\right] \\
& =\frac{R_{X}(\tau)}{2} \cos 2 \pi f_{c} \tau
\end{aligned}
$$

Therefore, Z_{t} is wide-sense stationary.
2. (a) As derived in class, we have

$$
R_{X}(\tau)=\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{A}(k) R_{p}(\tau-k T)
$$

where

$$
R_{p}(\tau)=\int_{-\infty}^{\infty} p(t) p(t+\tau) d t
$$

(b) $R_{A}(k)=0$ for all $k \neq 0$. Therefore

$$
R_{X}(\tau)=\frac{1}{T} R_{A}(0) R_{p}(\tau)
$$

where $R_{A}(0)=1$ and

$$
R_{p}(\tau)=\left\{\begin{array}{rr}
A^{2}(2 T-|\tau|) & |\tau|<2 T \\
0 & \text { else }
\end{array}\right.
$$

Therefore, we have (see Figure 1)

$$
R_{X}(\tau)=\left\{\begin{array}{rr}
A^{2}\left(2-\frac{|\tau|}{T}\right) & |\tau|<2 T \\
0 & \text { else }
\end{array}\right.
$$

(c)

$$
R_{p}(\tau)=\left\{\begin{array}{rr}
A^{2}(T-|\tau|) & |\tau|<T \\
0 & \text { else }
\end{array}\right.
$$

$R_{A}(0)=E\left[A_{n}^{2}\right]=E\left[\left(B_{n}+B_{n-1}\right)\left(B_{n}+B_{n-1}\right)\right]=E\left[B_{n}^{2}\right]+E\left[B_{n-1}^{2}\right]=2$.
$R_{A}(-1)=R_{A}(1)=E\left[A_{n} A_{n-1}\right]=E\left[\left(B_{n}+B_{n-1}\right)\left(B_{n-1}+B_{n-2}\right)\right]=E\left[B_{n-1}^{2}\right]=1$.
$R_{A}(k)=0$ for all $|k| \geq 2$.

Figure 1:

We get the same result for $R_{A}(\tau)$ as in part (b) (See Figure 1).

$$
R_{X}(\tau)=\left\{\begin{array}{rr}
A^{2}\left(2-\frac{|\tau|}{T}\right) & |\tau|<2 T \\
0 & \text { else }
\end{array}\right.
$$

(d) $R_{A}(k)=0$ for $k \geq 2 . R_{A}(0)=E\left[\left(2 B_{n}+B_{n-1}\right)\left(2 B_{n}+B_{n-1}\right)\right]=4+1=5$. $R_{A}(1)=R_{A}(-1)=E\left[\left(2 B_{n}+B_{n-1}\right)\left(2 B_{n+1}+B_{n}\right)\right]=2$. Therefore, we have

$$
R_{X}(\tau)=\frac{1}{T}\left[5 R_{p}(\tau)+2 R_{p}(\tau-T)+2 R_{p}(\tau+T)\right]
$$

which is as shown in Figure 2.

Figure 2:

