EE5040: Adaptive Signal Processing

Problem Set 8: Least-squares and recursive least-squares

1. (Sayed, Chapter 34, Lemma 34.4, Complex Householder reflection) Consider a $1 \times n$ vector \mathbf{z} with possibly complex entries. Choose $\mathbf{g}=\mathbf{z} \pm\|\mathbf{z}\| e^{j \phi_{a}} \mathbf{e}_{0}$ and

$$
\Theta=\mathbf{I}_{n}-2 \frac{\mathbf{g}^{H} \mathbf{g}}{\mathbf{g g}^{H}}
$$

to get

$$
\mathbf{z} \Theta=\mp\|\mathbf{z}\| e^{j \phi_{a}} \mathbf{e}_{0}
$$

Here $\mathbf{e}_{0}=\left[\begin{array}{llll}1 & 0 & 0 & \cdots\end{array}\right]$ and ϕ_{a} denotes the phase of the leading entry of \mathbf{z}.
2. (Sayed, Example 34.1, Using Householder transformations) Assume we are given a $2 \times$ 3 matrix $A=\left[\begin{array}{ccc}1 & 0.75 & 0.75 \\ 0.4 & 0.2 & 0.2\end{array}\right]$ and that we wish to reduce it to the form $A \Theta=$ $\left[\begin{array}{ccc}\times & 0 & 0 \\ \times & \times & 0\end{array}\right]$ via Householder tranformations. (Hint: First make the $(1,2)$ and $(1,3)$ entries 0 , and then the $(2,3)$ entry 0 .)
3. (Sayed VII.11, Danger of Squaring) Solving the normal equations $H^{H} H \hat{\mathbf{w}}=H^{H} \mathbf{x}$ by forming the matrix $H^{H} H$ (i.e., by squaring the data) is a bad idea in general. This is because for ill-conditioned matrices H, numerical precision is lost when the matrix product $H^{H} H$ is formed. Recall that ill-conditioned matrices are those that have a very large ratio of largest to smallest singular values, i.e., they are close to being rank-deficient. Consider that full-rank matrix

$$
H=\left[\begin{array}{ll}
1 & 1 \\
0 & \epsilon \\
1 & 1
\end{array}\right]
$$

where ϵ is a very small positive number that is of the same order of magnitude as the machine precision. Assuming $2+\epsilon^{2}=2$ in finite precision, what is the rank of $H^{H} H$?
4. (Sayed VIII.6, Rotation matrix for QR algorithm) In the QR RLS algorithm, we wanted a unitary transformation Θ such that (assume $M=3$):

$$
\left[\begin{array}{cc}
\lambda^{1 / 2} \Phi_{i-1}^{1 / 2} & \mathbf{h}_{i} \\
\lambda^{1 / 2} \mathbf{q}_{i-1}^{H} & \bar{X}_{i}^{*}
\end{array}\right] \Theta \equiv\left[\begin{array}{ccc|c}
\times & 0 & 0 & \times \\
\times & \times & 0 & \times \\
\times & \times & \times & \times \\
\hline \times & \times & \times & \times
\end{array}\right] \Theta=\left[\begin{array}{ccc|c}
\times & 0 & 0 & 0 \\
\times & \times & 0 & 0 \\
\times & \times & \times & 0 \\
\hline \times & \times & \times & \times
\end{array}\right]
$$

One way to implement Θ is via a sequence of three elementary Givens rotations in order to annihilate the three entries of \mathbf{h}_{i}, one at a time. Now since, by assumption, the diagonal entries of $\Phi_{i-1}^{1 / 2}$ are positive, we have that the diagonal entries of the triangular matrix in the pre-array (left hand side of the equation) are positive. Recall further that we desire a post-array (right hand side of the equation) having a $\Phi_{i}^{1 / 2}$ with positive diagonal entries as well. Using the fact that the diagonal entries of the individual Givens rotations will be positive, conclude that the rightmost diagonal entry of Θ is positive.

