EE5040: Adaptive Signal Processing
 Problem Set 7: Recursive least-squares

1. (Sayed VII.12, QR method) Consider the normal equations $H^{H} H \hat{\mathbf{w}}=H^{H} \mathbf{x}$, where H is $N \times M$. Assume H has full column rank (i.e., the rank of H is M) so that $H^{H} H$ is positive definite. A method to reduce the effects of ill-conditioning of H on the solution of the normal equations is to avoid forming the product $H^{H} H$ and to determine the Cholesky factor L by working directly with H. This can be achieved by appealing to the so-called QR decomposition of H namely,

$$
H=Q\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

where Q is $N \times N$ unitary and R is $M \times M$ upper-triangular with positive diagonal entries.
(a) Show that $L=R^{H}$. (Remark: With the L so determined, we can solve the normal equations by using the two-step procedure in problem set 6 . Alternatively, we can proceed as below, which is nowadays the preferred way of solving the normal equations due to its numerical reliability.)
(b) Let $\left[\begin{array}{l}\mathbf{z}_{1} \\ \mathbf{z}_{2}\end{array}\right]=Q^{H} \mathbf{x}$, where \mathbf{z}_{1} is $M \times 1$. Verify that $\|\mathbf{x}-H \mathbf{w}\|^{2}=\left\|\mathbf{z}_{1}-R \mathbf{w}\right\|^{2}+$ $\left\|\mathbf{z}_{2}\right\|^{2}$. Conclude that the solution $\hat{\mathbf{w}}$ can be obtained by solving the triangular linear system of equations $R \hat{\mathbf{w}}=\mathbf{z}_{1}$. Conclude further that the resulting minimum cost is $\left\|\mathbf{z}_{2}\right\|^{2}$.
2. (Sayed, Chapter 34, Lemma 34.2, Complex Givens rotation) Consider a 1×2 vector $[a b]$ with possibly complex entries. Then choose Θ as

$$
\Theta=\frac{1}{\sqrt{1+|\rho|^{2}}}\left[\begin{array}{cc}
1 & -\rho \\
\rho^{*} & 1
\end{array}\right] \text { where } \rho=\frac{b}{a}, a \neq 0
$$

to get

$$
[a b] \Theta= \pm e^{j \phi_{a}} \sqrt{|a|^{2}+|b|^{2}}\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

where ϕ_{a} denotes the phase of a. If $a=0$, then choose Θ as

$$
\Theta=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

to get $\left[\begin{array}{ll}0 & b\end{array}\right] \Theta=\left[\begin{array}{ll}b & 0\end{array}\right]$.
3. (Sayed, Example 34.1, Using Givens rotations) Assume we are given a 2×3 matrix A

$$
A=\left[\begin{array}{ccc}
1 & 0.75 & 0.75 \\
0.4 & 0.2 & 0.2
\end{array}\right]
$$

and that we wish to reduce it to the form

$$
A \Theta=\left[\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0
\end{array}\right]
$$

via a sequence of Givens rotations. (Hint: First make the $(1,3)$ entry 0 , then the $(1,2)$ entry, and finally the $(2,3)$ entry.)

