EE5040: Adaptive Signal Processing Problem Set 6: Least-squares

- 1. (Sayed VII.10, Cholesky method) Consider the normal equations $H^H H \hat{\mathbf{w}} = H^H \mathbf{x}$, where H is $N \times M$. Assume H has full column rank (i.e., the rank of H is M) so that $H^H H$ is positive definite. The normal equations can be solved by the standard method of Gaussian elimination. They can also be solved by appealing to the Cholesky factorization of $H^H H$. Every positive definite matrix admits a unique triangular factorization of the form $H^H H = LL^H$, where L is lower-triangular with positive entries on its diagonal. The matrix L is called the Cholesky factor of $H^H H$. Show that the normal equations can be solved by means of the following two steps.
 - (a) Solve the lower triangular system of equations $L\hat{\mathbf{y}} = H^H \mathbf{x}$ for $\hat{\mathbf{y}}$.
 - (b) Solve the upper triangular system of equations $L^H \hat{\mathbf{w}} = \hat{\mathbf{y}}$ for $\hat{\mathbf{w}}$.
- 2. (Sayed VII.19, Stochastic properties of least-squares solutions) Let $\mathbf{x} = H\mathbf{w}_0 + \mathbf{v}$, where \mathbf{w}_0 is an unknown vector that we wish to estimate and \mathbf{v} is a zero-mean random vector with covariance matrix $\sigma_v^2 \mathbf{I}$. Moreover, H is $N \times M$, $N \ge M$, and has full column rank. The LS estimate of \mathbf{w}_0 is $\hat{\mathbf{w}} = (H^H H)^{-1} H^H \mathbf{x}$. In order to study the stochastic proerties of this least-squares solution, we need to treat it \mathbf{x} as a random quantity.
 - (a) Verify that $\hat{\mathbf{w}} = \mathbf{w}_0 + (H^H H)^{-1} H^H \mathbf{v}$, and conclude that $\hat{\mathbf{w}}$ is an unbiased estimator.
 - (b) Show that $E[(\mathbf{w}_0 \hat{\mathbf{w}})(\mathbf{w}_0 \hat{\mathbf{w}})^H] = \sigma_v^2 (H^H H)^{-1}$.
 - (c) Assume N > M and let $\hat{\sigma}_v^2 = ||\mathbf{\tilde{x}}||^2/(N M)$, where $\mathbf{\tilde{x}} = \mathbf{x} H\mathbf{\hat{w}}$, denote an estimator of the noise variance. Verify that $E[||\mathbf{\tilde{x}}||^2] = \sigma_v^2 \text{Tr}(I P_H)$, where P_H is the projection matrix onto R(H). Show further that $\text{Tr}(I P_H) = N M$ and conclude that $\hat{\sigma}_v^2$ is an unbiased estimate of σ_v^2 .