EE5040: Adaptive Signal Processing Problem Set 4: Gradient Descent Method

1. (Sayed III.8, Prediction problem) A zero-mean stationary random process $\left\{U_{i}\right\}$ is generated by passing a zero-mean white sequence $\left\{V_{i}\right\}$ with variance σ_{v}^{2} through a second-order auto-regressive model, namely, $U_{i}+\alpha U_{i-1}+\beta U_{i-2}=V_{i}$ for $i>-\infty$, where α and β are real numbers such that the roots of the characteristic equation $1+\alpha z^{-1}+\beta z^{-2}=0$ are strictly inside the unit circle. We wish to design a second-order predictor for the process $\left\{U_{i}\right\}$ of the form $\hat{U}_{i}=\mathbf{k}^{H} \mathbf{Y}$, where $\mathbf{Y}=\left[\begin{array}{ll}U_{i-1} & U_{i-2}\end{array}\right]^{T}$.
(a) Verify that α and β must satisfy $|\beta|<1$ and $|\alpha|<1+\beta$.
(b) Find \mathbf{R}_{Y} and $\mathbf{R}_{U_{i} Y}$. Establish that $(1-\beta)\left[(1+\beta)^{2}-\alpha^{2}\right]>0$.
(c) Show that $\mathbf{k}_{\text {opt }}=\left[\begin{array}{ll}-\alpha & -\beta\end{array}\right]^{T}$. Could you have guessed this answer more directly without evaluating it?
(d) Verify that the eigenvalue spread of \mathbf{R}_{Y} is $\rho=(\beta+1+|\alpha|) /(\beta+1-|\alpha|)$. Design a steepest descent algorithm that determines $\mathbf{k}_{\text {opt }}$ iteratively. Provide a condition on the step-size μ in terms of α and β in order to guarantee convergence.
(e) Show that the value of the step-size that yields the fastest convergence, and the resulting time-constant, are

$$
\mu^{o}=\frac{1-\beta}{1+\beta} \frac{(1+\beta)^{2}-\alpha^{2}}{\sigma_{v}^{2}}, \quad \text { and } \quad \tau^{o}=\frac{1}{2 \ln (|\alpha| /(\beta+1))} .
$$

2. (Sayed III.4, Convergent step-size sequence) Consider the steepest descent algorithm with a time-variant step-size. Assume that μ_{i} converges to a positive value, say, $\mu_{i} \rightarrow \alpha>0$ as $i \rightarrow \infty$. Show that if α satisfies $\alpha<2 / \lambda_{\max }$, then \mathbf{k}_{i} converges to $\mathbf{k}_{\text {opt }}$.
3. (Sayed III.5, Optimal step-size) Consider the optimal step-size in the iteration-dependent case of the steepest descent algorithm. Show that $1 / \lambda_{\max } \leq \mu_{i}^{o} \leq 1 / \lambda_{\min }$, where $\lambda_{\max }$ and $\lambda_{\text {min }}$ denote the largest and smallest eigenvalues of \mathbf{R}_{Y}. Conclude that $\sum_{i=0}^{\infty} \mu_{i}^{o}$ diverges.
4. (Sayed III.3, Optimal step-size) Verify that the optimal iteration-dependent step-size is equivalent to the following expression:

$$
\mu_{i}^{o}=\frac{\nabla_{\mathbf{k}_{i}} J\left(\mathbf{k}_{i}\right) \nabla_{\mathbf{k}_{i}}^{H} J\left(\mathbf{k}_{i}\right)}{\nabla_{\mathbf{k}_{i}} J\left(\mathbf{k}_{i}\right) \mathbf{R}_{Y} \nabla_{\mathbf{k}_{i}}^{H} J\left(\mathbf{k}_{i}\right)},
$$

in terms of the squared Euclidean norm of the gradient vector in the numerator, and the weighted squared Euclidean norm of the same vector in the denominator.

