EE5040: Adaptive Signal Processing

Problem Set 3: Linear least-mean-squares estimation

1. (Sayed II.13, Correlated component) Assume that a zero-mean random variable X consists of two components, $X=X_{c}+Z$, and that only X_{c} is correlated with the observation vector Y. Show that the linear least-mean-squares estimator of X given \mathbf{Y} is simply the linear least-mean-squares estimator of X_{c} given Y.
2. (Sayed II.8, Weighted error cost) Show that the linear least-mean-squares estimator of \mathbf{X} given \mathbf{Y}, given by $\hat{\mathbf{X}}=K_{0} \mathbf{Y}$ where K_{0} is any solution to the linear system of equations $K_{0} R_{Y}=R_{X Y}$, also minimizes $E\left[\tilde{\mathbf{X}}^{H} W \tilde{\mathbf{X}}\right]$ for any $W \geq 0$.
3. (Sayed II.5, Minimum of a quadratic form) Consider the quadratic cost function $J(\mathbf{x})=$ $(\mathbf{x}-\mathbf{c})^{H} A(\mathbf{x}-\mathbf{c})$ where A is a Hermitian nonnegative-definite matrix and \mathbf{x} and \mathbf{c} are column vectors. Argue that the minimum value of $J(x)$ is zero and it is achieved at $\mathbf{x}=\mathbf{c}+\mathbf{d}$ for any \mathbf{d} satisfying $A \mathbf{d}=\mathbf{0}$.
