EE5040: Adaptive Signal Processing Problem Set 1: Optimal least-mean-squares estimation

- 1. (Sayed I.13) Consider noisy observations $Y_i = X + V_i$, where X and V_i are independent real-valued random variables, V_i is a white-noise Gaussian random process with zero mean and variance σ_v^2 , and X takes the values ± 1 with equal probability. The value of X is the same for all measurements $\{Y_i\}$.
 - (a) Show that the least-mean-squares estimate of X in terms of $\{Y_0, Y_1, \dots, Y_{N-1}\}$ is

$$\hat{X}_N = \tanh\left(\sum_{i=0}^{N-1} \frac{Y_i}{\sigma_v^2}\right).$$

(b) Assume X takes the value 1 with probability p and the value -1 with probability 1-p. Show that the least-mean-squares estimate of X in terms of $\{Y_0, Y_1, \dots, Y_{N-1}\}$ is

$$\hat{X}_N = \tanh\left(\frac{1}{2}\ln\left(\frac{p}{1-p}\right) + \sum_{i=0}^{N-1}\frac{Y_i}{\sigma_v^2}\right).$$

(c) Assume that the noise is correlated. Let $\mathbf{R}_v = E[\mathbf{V}\mathbf{V}^T]$, where $\mathbf{V} = [V_0 \ V_1 \ \cdots \ V_{N-1}]^T$. Show that the least-mean-squares estimate of X in terms of $\{Y_0, Y_1, \cdots, Y_{N-1}\}$ is

$$\hat{X}_N = \tanh\left(\frac{1}{2}\ln\left(\frac{p}{1-p}\right) + \mathbf{1}^T \mathbf{R}_v^{-1} \mathbf{Y}\right),$$

where $\mathbf{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}_{N \times 1}^{T}$.

- 2. (Sayed I.16) Suppose we observe Y = X + V, where X and V are independent real-valued random variables with exponential distributions with parameters λ_1 and λ_2 ($\lambda_1 \neq \lambda_2$). That is, the PDFs of X and V are $f_X(x) = \lambda_1 e^{-\lambda_1 x}$ for $x \ge 0$ and $f_V(v) = \lambda_2 e^{-\lambda_2 v}$ for $v \ge 0$, respectively.
 - (a) Using the fact that the PDF of the sum of two independent random variables is the convolution of the individual PDFs, show that

$$f_Y(y) = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} e^{-\lambda_2 y} \left[e^{(\lambda_2 - \lambda_1)y} - 1 \right], \quad y \ge 0.$$

- (b) Establish that $f_{X,Y}(x,y) = \lambda_1 \lambda_2 e^{(\lambda_2 \lambda_1)x \lambda_2 y}$, for $x \ge 0$ and $y \ge 0$.
- (c) Show that the least-mean-squares estimate of X given Y = y is

$$\hat{X} = \frac{1}{\lambda_1 - \lambda_2} - \frac{e^{-\lambda_1 y}}{e^{-\lambda_2 y} - e^{-\lambda_1 y}}y.$$