EC305 Problem Set 5

- 1. [Problem 2.13] Let $g(D) = D^L + g_{L-1}D^{L-1} + \cdots + g_1D + 1$ (assume that L > 0). Let z(D) be a nonzero polynomial with highest and lowest order terms of degree j and i, respectively; that is, $z(D) = D^j + z_{j-1}D^{j-1} + \cdots + D^i$ [or $z(d) = D^j$, if i = j]. Show that g(D) z(D) has at least two nonzero terms. Hint: Look at the coefficients of D^{L+j} and of D^i .
- 2. [Problem 2.14] Show that if g(D) contains a factor 1 + D, then all error sequences with an odd number of errors are detected.
- 3. [Problem 2.15] For a given generator polynomial g(D) of degree L and given data length K, let $c^{(i)}(D) = c^{(i)}_{L-1}D^{L-1} + \cdots + c^{(i)}_1D + c^{(i)}_0$ be the CRC resulting from the data string with a single 1 in position i [i.e., $s(d) = D^i$ for $0 \le i \le K 1$].
 - (a) For an arbitrary data polynomial s(D), show that the CRC polynomial is $c(D) = \sum_{i=0}^{K-1} s_i c^{(i)}(D)$ (using modulo 2 arithmetic).
 - (b) Letting $c(D) = c_{L-1}D^{L-1} + \dots + c_1D + c_0$, show that

$$c_j = \sum_{i=0}^{K-1} s_i c_j^{(i)}; \quad 0 \le j < L.$$

This shows that each c_i is a parity check and that a CRC code is a parity check code.

- 4. [Problem 2.16(a)] Consider a stop-and-wait ARQ strategy in which, rather than using a sequence number for successive packets, the sending DLC sends the number of times the given packet has been retransmitted. The number of times a packet is retransmitted is 0 the first time a packet is transmitted. The receiving DLC returns an ack or nak (without any request number) for each frame it receives. Show by example that this strategy does not work correctly no matter what rule the receiving DLC uses for accepting packets.
- 5. [Problem 2.20] Give an example in which go back n ARQ fails if the modulus m is equal to n.
- 6. Reading: Correctness of Stop and Wait. Page No.69-71
- 7. [Problem 2.30]
- 8. [Problem 2.31] Suppose the bit stuffing rule of Section 2.5.2 is modified to stuff a 0 only after the appearance of 01⁵ in the original data. Carefully describe how the destuffing rule at the receiver must be modified to work with this change. Show how your rule would destuff the following string:

011011111011111101111110101111110

If your destuffing rule is correct, you should remove only two 0's and find only one actual flag.

- 9. [Problem 2.32] Bit stuffing must avoid the appearance of 01^6 within the transmitted frame, so we accept as given that an original string 01^6 will always be considered into 01^501 . Use this, plus the necessity to destuff correctly at the receiver, to show that a 0 must always be stuffed after 01^5 . *Hint*: Consider the data string $01^501x_1x_2...$. If a 0 is not stuffed after 01^5 , the receiver cannot distinguish this from $01^6x_1x_2...$ after stuffing, so stuffing is required in this case. Extend this argument to $01^50^kx_1x_2...$ for any k>1.