EC204: Networks & Systems
Solution to Problem Set 7

1. The transformed network is shown below.
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I(s) can be determined as follows.
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The second term of I(s) can be expanded as
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K> and K3 can be found by equating the coefficients of s? and s in the numerator of the
left hand side and right hand side of the expansion. Therefore, we get
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Therefore, we have
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for t > 0. The total solution i(t) can be split into its transient and steady state components
as i(t) = i (t) + i5s(t) where
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and 10
iss(t) = R [~wL coswt + Rsinwt] .
. The condition at ¢t = 0~ can be easily obtained as vc(0~) = 2V. Then, the transformed

network is as shown below.
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From the above network, we have
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Therefore, we have
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Finally, we have
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for t > 0.



3. The conditions at t = 0~ can be easily obtained as v¢(07) =4V and i1,(07) = 4A. Then,
the transformed network is as shown below.
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From the above network, we have
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Finally, we have

for t > 0.



4. The conditions at ¢ = 0~ can be easily obtained as vo(07) = 4V and i1,(0~) = 2A. Then,
the transformed network is as shown below.
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From the above network, we have
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For ¢t > 0T, we have
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Therefore, we have (using initial value theorem)
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Similarly, we have
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5. The initial conditions at t = 0~ are y1(07) = 24 and y2(07) = 1A. The transformed

network is as shown below.
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The loop equations are:
6
Yi(s)[24 8] — Ya(s) =2+ B

and
Ya(s)[2+ s] — Yi(s) = 1.

Solving these loop equations, we have
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Using partial fraction expansion, we get
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Therefore, we get
y1(t) = 4u(t) — 1.5e " u(t) — 0.5 3tu(t),

and
ya(t) = 2u(t) — 1.5 tu(t) + 0.5 3u(t).
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6. (a) H(s)= 5127 = G127 = G12° + Grop Therefore, the impulse response

h(t) is given by

2
h(t) = te”2u(t) + Ee*%(t).
(b) Steady state response to 10u(t) is [H(s)|,_o] 10u(t).
3
H = -.
($)ls—0 = g

Therefore, the steady state response to 10u(t) is 3.75u(t).



(c) Steady state response to e/?'u(t) is [H(s)|s:j2} eI2tu(t).
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= —0.03125 — 50.15625.

Therefore, the steady state response to e/? u(t) is (—0.03125 — j0.15625)e/ 2 u(t).
7. An input x(t) = u(t) gives an output y(t) = (de~t — 3e=2)u(t).
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(b) System function H(s) =
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(c) Let the output for the input z(t) = e~*u(t) be y(t).

= §(t) — de " u(t) + 6e 2 u(t).

(a) Impulse response h(t) = L1 [H(s)] = L7 [1 -
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Therefore, y(t) = —ge_t +3e7 2 — §6_4t} u(t).
(d) The steady state response to cos 2t is [H(s)|s=j2] cos 2t.
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Therefore, the steady state response is 1.7 cos (2t + 3.4°).
8. (a) Pole-Zero plot:
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This system is BIBO stable.



(b) Pole-Zero plot:

Im(s)
Double pole at —2
3 05 0 Re(s)
This system is BIBO stable.
(c) Pole-Zero plot:
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This system is not BIBO stable.



(d) Pole-Zero plot:
Im(s)

Double poles at +j
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This system is not BIBO stable.
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The Laplace transform of the output to a unit step input is
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Equating the coefficients of s in the numerator of Y(s) and its partial fraction expansion,
we have A+ B =0 and 2A + C = 1. Therefore, we have

B=-2
2
and
C=1-a.

We want to determine the term in y(t) of the form Koe !sin (¢ + ¢). The will correspond
to the inverse laplace transform of the second term in the partial fraction expansion.

[l - 2

= Be 'cost + (C — B)e 'sint = /B2 + (C — B)?sin (t + ¢).

Therfore, we have
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