EC204: Networks \& Systems
 Solution to Problem Set 7

1. The transformed network is shown below.

$I(s)$ can be determined as follows.

$$
I(s)=\frac{\frac{10 \omega}{s^{2}+\omega^{2}}+\rho L}{R+L s}=\frac{\rho}{s+\frac{R}{L}}+\frac{10 \omega / L}{\left(s^{2}+\omega^{2}\right)\left(s+\frac{R}{L}\right)}
$$

The second term of $I(s)$ can be expanded as

$$
\begin{gathered}
\frac{10 \omega / L}{\left(s^{2}+\omega^{2}\right)\left(s+\frac{R}{L}\right)}=\frac{K_{1}}{s+\frac{R}{L}}+\frac{K_{2} s+K_{3}}{s^{2}+\omega^{2}} . \\
K_{1}=\frac{10 \omega L}{R^{2}+\omega^{2} L^{2}}
\end{gathered}
$$

K_{2} and K_{3} can be found by equating the coefficients of s^{2} and s in the numerator of the left hand side and right hand side of the expansion. Therefore, we get

$$
K_{1}+K_{2}=0 \quad \text { and } \quad K_{2} \frac{R}{L}+K_{3}=0
$$

leading to

$$
K_{2}=-K_{1} \quad \text { and } \quad K_{3}=-K_{2} \frac{R}{L}
$$

Therefore, we have

$$
I(s)=\frac{\rho}{s+\frac{R}{L}}+\frac{10 \omega L}{R^{2}+\omega^{2} L^{2}} \frac{1}{s+\frac{R}{L}}+\left(-\frac{10 \omega L}{R^{2}+\omega^{2} L^{2}}\right) \frac{1}{s^{2}+\omega^{2}}+\frac{10 \omega R}{R^{2}+\omega^{2} L^{2}} \frac{1}{s^{2}+\omega^{2}}
$$

and

$$
i(t)=\rho e^{-R t / L}+\frac{10}{R^{2}+\omega^{2} L^{2}}\left[\omega L e^{-R t / L}-\omega L \cos \omega t+R \sin \omega t\right]
$$

for $t \geq 0$. The total solution $i(t)$ can be split into its transient and steady state components as $i(t)=i_{t r}(t)+i_{s s}(t)$ where

$$
i_{t r}(t)=\rho e^{-R t / L}+\frac{10 \omega L}{R^{2}+\omega^{2} L^{2}} e^{-R t / L}
$$

and

$$
i_{s s}(t)=\frac{10}{R^{2}+\omega^{2} L^{2}}[-\omega L \cos \omega t+R \sin \omega t]
$$

2. The condition at $t=0^{-}$can be easily obtained as $v_{C}\left(0^{-}\right)=2 V$. Then, the transformed network is as shown below.

From the above network, we have

$$
V_{C}(s)-\frac{4}{s}+\left(V_{C}(s)-\frac{2}{s}\right) 2 s+V_{C}(s)-\frac{1}{s}\left(1-e^{-s}\right)=0
$$

Therefore, we have

$$
\begin{aligned}
V_{C}(s) & =\frac{\frac{4}{s}+4+\frac{1}{s}\left(1-e^{-s}\right)}{1+2 s+1} \\
& =\frac{4 s+4+\left(1-e^{-s}\right)}{s(2 s+2)} \\
& =\frac{2}{s}+\frac{1}{2 s(s+1)}\left(1-e^{-s}\right) \\
& =\frac{2}{s}+\left[\frac{1 / 2}{s}+\frac{-1 / 2}{s+1}\right]\left(1-e^{-s}\right)
\end{aligned}
$$

Finally, we have

$$
v_{C}(t)=2 u(t)+\frac{1}{2}\left(1-e^{-t}\right) u(t)-\frac{1}{2}\left(1-e^{-(t-1)}\right) u(t-1)
$$

for $t \geq 0$.
3. The conditions at $t=0^{-}$can be easily obtained as $v_{C}\left(0^{-}\right)=4 V$ and $i_{L}\left(0^{-}\right)=4 A$. Then, the transformed network is as shown below.

From the above network, we have

$$
V_{C}(s)-\frac{4}{s}+\frac{V_{C}(s)+16}{1+4 s}+\left(V_{C}(s)-\frac{4}{s}\right) 4 s=0
$$

Therefore, we have

$$
\begin{aligned}
V_{C}(s) & =\frac{\frac{4}{s}+16+\frac{16}{1+4 s}}{1+\frac{1}{1+4 s}+4 s} \\
& =\frac{2\left(16 s^{2}+4 s+1\right)}{s\left(8 s^{2}+4 s+1\right)} \\
& =\frac{2}{s}\left[1+\frac{8 s^{2}}{8 s^{2}+4 s+1}\right] \\
& =\frac{2}{s}+\frac{2 s}{\left(s+\frac{1}{4}\right)^{2}+\frac{1}{16}}
\end{aligned}
$$

Finally, we have

$$
v_{C}(t)=2+2 e^{-t / 4} \cos \frac{t}{4}
$$

for $t \geq 0$.
4. The conditions at $t=0^{-}$can be easily obtained as $v_{C}\left(0^{-}\right)=4 V$ and $i_{L}\left(0^{-}\right)=2 A$. Then, the transformed network is as shown below.

From the above network, we have

$$
\frac{V_{C}(s)}{3}+\left(V_{C}(s)-\frac{4}{s}\right) 2 s+\frac{\left(V_{C}(s)-\frac{12}{s}-4\right)}{4+2 s}=0
$$

Therefore, we have

$$
\begin{aligned}
V_{C}(s) & =\frac{8+\frac{\frac{12}{s}+4}{4+2 s}}{\frac{1}{3}+2 s+\frac{1}{4+2 s}} \\
& =\frac{12\left(4 s^{2}+9 s+3\right)}{s\left(12 s^{2}+26 s+7\right)} \\
v_{C}\left(0^{+}\right) & =\lim _{s \rightarrow \infty} s V_{C}(s)=4
\end{aligned}
$$

For $t \geq 0^{+}$, we have

$$
\frac{d v_{C}}{d t} \Longleftrightarrow s V_{C}(s)-v_{C}\left(0^{+}\right)=\frac{4 s+8}{12 s^{2}+26 s+7}
$$

Therefore, we have (using initial value theorem)

$$
\left.\frac{d v_{C}}{d t}\right|_{t=0^{+}}=\lim _{s \rightarrow \infty} s\left[\frac{4 s+8}{12 s^{2}+26 s+7}\right]=\frac{1}{3}
$$

Similarly, we have

$$
\begin{gathered}
\frac{d^{2} v_{C}}{d t^{2}} \Longleftrightarrow s \mathcal{L}\left[\frac{d v_{C}}{d t}\right]-\left.\frac{d v_{C}}{d t}\right|_{t=0^{+}}=\frac{-2 s-7}{3\left(12 s^{2}+26 s+7\right)} \\
\left.\frac{d^{2} v_{C}}{d t^{2}}\right|_{t=0^{+}}=\lim _{s \rightarrow \infty} s\left[\frac{-2 s-7}{3\left(12 s^{2}+26 s+7\right)}\right]=\frac{-1}{18} .
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{d^{3} v_{C}}{d t^{3}} \Longleftrightarrow s \mathcal{L}\left[\frac{d^{2} v_{C}}{d t^{2}}\right]-\left.\frac{d^{2} v_{C}}{d t^{2}}\right|_{t=0^{+}}=\frac{-204 s-21}{54\left(12 s^{2}+26 s+7\right)} \\
\left.\quad \frac{d^{3} v_{C}}{d t^{3}}\right|_{t=0^{+}}=\lim _{s \rightarrow \infty} s\left[\frac{-204 s-21}{54\left(12 s^{2}+26 s+7\right)}\right]=\frac{-17}{54}
\end{gathered}
$$

5. The initial conditions at $t=0^{-}$are $y_{1}\left(0^{-}\right)=2 A$ and $y_{2}\left(0^{-}\right)=1 A$. The transformed network is as shown below.

The loop equations are:

$$
Y_{1}(s)[2+s]-Y_{2}(s)=2+\frac{6}{s}
$$

and

$$
Y_{2}(s)[2+s]-Y_{1}(s)=1 .
$$

Solving these loop equations, we have

$$
Y_{1}(s)=\frac{2 s^{2}+11 s+12}{s(s+1)(s+3)}
$$

and

$$
Y_{2}(s)=\frac{s^{2}+4 s+6}{s(s+1)(s+3)}
$$

Using partial fraction expansion, we get

$$
Y_{1}(s)=\frac{4}{s}+\frac{-1.5}{s+1}+\frac{-0.5}{s+3}
$$

and

$$
Y_{2}(s)=\frac{2}{s}+\frac{-1.5}{s+1}+\frac{0.5}{s+3} .
$$

Therefore, we get

$$
y_{1}(t)=4 u(t)-1.5 e^{-t} u(t)-0.5 e^{-3 t} u(t),
$$

and

$$
y_{2}(t)=2 u(t)-1.5 e^{-t} u(t)+0.5 e^{-3 t} u(t) .
$$

6. (a) $H(s)=\frac{s+3}{(s+2)^{3}}=\frac{s+2+1}{(s+2)^{3}}=\frac{1}{(s+2)^{2}}+\frac{1}{(s+2)^{3}}$. Therefore, the impulse response $h(t)$ is given by

$$
h(t)=t e^{-2 t} u(t)+\frac{t^{2}}{2} e^{-2 t} u(t) .
$$

(b) Steady state response to $10 u(t)$ is $\left[\left.H(s)\right|_{s=0}\right] 10 u(t)$.

$$
\left.H(s)\right|_{s=0}=\frac{3}{8} .
$$

Therefore, the steady state response to $10 u(t)$ is $3.75 u(t)$.
(c) Steady state response to $e^{j 2 t} u(t)$ is $\left[\left.H(s)\right|_{s=j 2}\right] e^{j 2 t} u(t)$.

$$
\left.H(s)\right|_{s=j 2}=\frac{-1-j 5}{32}=-0.03125-j 0.15625 .
$$

Therefore, the steady state response to $e^{j 2 t} u(t)$ is $(-0.03125-j 0.15625) e^{j 2 t} u(t)$.
7. An input $x(t)=u(t)$ gives an output $y(t)=\left(4 e^{-t}-3 e^{-2 t}\right) u(t)$.

$$
X(s)=\frac{1}{s} \quad \text { and } \quad Y(s)=\frac{4}{s+1}-\frac{3}{s+2}=\frac{s+5}{(s+1)(s+2)} .
$$

(b) System function $H(s)=\frac{Y(s)}{X(s)}=\frac{s(s+5)}{(s+1)(s+2)}$.
(a) Impulse response $h(t)=\mathcal{L}^{-1}[H(s)]=\mathcal{L}^{-1}\left[1-\frac{4}{s+1}+\frac{6}{s+2}\right]=\delta(t)-4 e^{-t} u(t)+6 e^{-2 t} u(t)$.
(c) Let the output for the input $x(t)=e^{-4 t} u(t)$ be $y(t)$.

$$
Y(s)=X(s) H(s)=\frac{s(s+5)}{(s+4)(s+1)(s+2)}=\frac{-4 / 3}{s+1}+\frac{3}{s+2}+\frac{-2 / 3}{s+4} .
$$

Therefore, $y(t)=\left[-\frac{4}{3} e^{-t}+3 e^{-2 t}-\frac{2}{3} e^{-4 t}\right] u(t)$.
(d) The steady state response to $\cos 2 t$ is $\left[\left.H(s)\right|_{s=j 2}\right] \cos 2 t$.

$$
\left.H(s)\right|_{s=j 2}=\frac{j 2(5+j 2)}{(1+j 2)(2+j 2)}=1.7 e^{j \theta} \text { where } \theta=3.4^{o} .
$$

Therefore, the steady state response is $1.7 \cos \left(2 t+3.4^{o}\right)$.
8. (a) Pole-Zero plot:

This system is BIBO stable.
(b) Pole-Zero plot:

This system is BIBO stable.
(c) Pole-Zero plot:

This system is not BIBO stable.
(d) Pole-Zero plot:

This system is not BIBO stable.
9. $H(s)=\frac{K(s+a)}{(s+1-j)(s+1+j)}=\frac{K(s+a)}{(s+1)^{2}+1}$.

The Laplace transform of the output to a unit step input is

$$
Y(s)=H(s) \frac{1}{s}=\frac{K(s+a)}{s\left((s+1)^{2}+1\right)}=K\left[\frac{A}{s}+\frac{B s+C}{(s+1)^{2}+1}\right],
$$

where

$$
A=\left.\frac{s+a}{(s+1)^{2}+1}\right|_{s=0}=\frac{a}{2} .
$$

Equating the coefficients of s in the numerator of $Y(s)$ and its partial fraction expansion, we have $A+B=0$ and $2 A+C=1$. Therefore, we have

$$
B=-\frac{a}{2},
$$

and

$$
C=1-a .
$$

We want to determine the term in $y(t)$ of the form $K_{2} e^{-t} \sin (t+\phi)$. The will correspond to the inverse laplace transform of the second term in the partial fraction expansion.

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{B s+C}{(s+1)^{2}+1}\right]=\mathcal{L}^{-1}\left[\frac{B(s+1)+(C-B)}{(s+1)^{2}+1}\right] \\
=B e^{-t} \cos t+(C-B) e^{-t} \sin t=\sqrt{B^{2}+(C-B)^{2}} \sin (t+\phi) .
\end{gathered}
$$

Therfore, we have

$$
K_{2}=K \sqrt{B^{2}+(C-B)^{2}}=K \sqrt{\left(\frac{a}{2}\right)^{2}+\left(1-\frac{a}{2}\right)^{2}} .
$$

