EC204: Networks \& Systems Solutions to Problem Set 5

1. (a) See Figure below. $X_{1}(\omega)=\operatorname{sinc}\left(\frac{\omega}{20000 \pi}\right)$.

Figure 1: Problem 1
(b) Bandwidth of $y_{1}(t)=10000 \mathrm{~Hz}$, bandwidth of $y_{2}(t)=5000 \mathrm{~Hz}$, bandwidth of $y(t)=$ bandwidth of $y_{1}(t)+$ bandwidth of $y_{2}(t)=15000 \mathrm{~Hz}$.
2.

$$
\begin{gathered}
\frac{V_{0}(\omega)}{I_{s}(\omega)}=? \\
I_{s}(\omega)=\frac{1}{\jmath \omega}+\pi \delta(\omega)
\end{gathered}
$$

Figure 2: Problem 2

$$
\begin{gathered}
\frac{V_{0}(\omega)}{1}+\frac{\left(V_{0}(\omega)+\frac{V_{0}(\omega)}{\jmath \frac{\omega}{6}}\right)}{2}=I_{s}(\omega) \\
\frac{V_{0}(\omega)}{I_{s}(\omega)}=\frac{1}{\frac{3}{2}+\frac{1}{\jmath \frac{\omega}{3}}}=\frac{\jmath \omega \frac{2}{3}}{\jmath \omega+2} \\
\Longrightarrow V_{0}(\omega)=\frac{2 / 3}{\jmath \omega+2}+\pi[0]=\frac{2 / 3}{2+\jmath \omega} \\
\Longrightarrow v_{0}(t)=\frac{2}{3} e^{-2 t} u(t)
\end{gathered}
$$

3. $f(t)$ is a periodic signal with period 4. It can be expanded using the Fourier series. Since $f(t)=-f\left(t+T_{0} / 2\right)$ (half-wave symmetry), only odd harmonics are present. Therefore, the frequencies (in Hz) in $f(t)$ are $1 / 4,3 / 4,5 / 4,7 / 4, \cdots$ (since the fundamental frequency is $1 / 4 \mathrm{~Hz}) . y(t)$ is a cosine function of frequency $1 / 2$ Hz.
Since we want $\cos \pi t$ at the output of the LTI system, the LTI system needs to remove all the components due to $f(t)$ and scale the cosine at 0.5 Hz by $1 / 2$. Therefore, the magnitude response of the proposed LTI system should satisfy:

$$
|H(\omega)|=0 \quad \text { for } \quad 0.5 \pi, 1.5 \pi, 2.5 \pi, \cdots
$$

and $|H(\omega)|=0.5$ for $\omega=\pi$. One possible magnitude response for the LTI system is shown in the figure below.

Figure 3: Problem 3
4.

$$
\begin{gathered}
z_{1}(t)=x(t) \cos \left(\omega_{1} t\right)+y(t) \cos \left(\omega_{2} t\right) \\
\omega_{1}=5 W, \omega_{2}=7 W \\
z_{4}(t)=x(t)
\end{gathered}
$$

Figure 4: Problem 4

Figure 5: Problem 4

Figure 6: Problem 4

Figure 7: Problem 4

