EC204: Networks \& Systems Solutions to Problem Set 3

1. (a) The period of $x(t)$ is 1. Therefore, $x(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n t}$. The d.c. value $c_{0}=$ $A / 2$. Now, let the first derivative of $x(t)$ (shown in figure below) be expressed as $\frac{d x(t)}{d t}=\sum_{n=-\infty}^{\infty} d_{n} e^{j 2 \pi n t}$.

It can be easily determined that $d_{n}=-A$ for $n \neq 0$ and $d_{0}=0$. Using this result, we can determine c_{n} as

$$
c_{n}=\frac{d_{n}}{j 2 \pi n}=\frac{j A}{2 \pi n} .
$$

The magnitude and phase spectrum of $x(t)$ are shown below.

(b) $y(t)$ can be expressed in terms of $x(t)$ as $y(t)=x(-t+0.5)+A$. Therefore, the Fourier coefficients of $y(t)$ are

$$
c_{0}=\frac{3 A}{2} \quad \text { and } \quad c_{n}=\frac{-j A}{2 \pi n} e^{-j 2 \pi n(0.5)}=\frac{-j A}{2 \pi n}(-1)^{n} \quad \text { for } n \neq 0 .
$$

2. The output $y(t)=x(t) \star h(t)$, where \star represents convolution.

For $t<2, y(t)=0$. For $2<t \leq 4$, we have

$$
y(t)=\int_{0}^{t-2} 2 e^{-2 \tau} d \tau=1-e^{-2(t-2)} .
$$

Similarly, for $t>4$, we have

$$
y(t)=\int_{t-4}^{t-2} 2 e^{-2 \tau} d \tau=e^{-2(t-4)}-e^{-2(t-2)}
$$

3. $y(t)$ is shown in the figure below.

4. $(-1)^{n}=e^{j n \pi}$. Therefore, we have

$$
y(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n t} e^{j n \pi}=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n(t+0.5)}=x(t+0.5)=x(t+0.5+k),
$$

where k is any integer.
5. Let $x_{1}(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t}$ and $x_{2}(t)=\sum_{n=-\infty}^{\infty} d_{n} e^{j n \omega_{0} t}$. The Fourier coefficients can be shown to be:

$$
\begin{gathered}
c_{n}=\frac{A d}{T_{0}} \operatorname{sinc}\left(n \omega_{0} d / 2\right), \\
d_{n}=\left\{\begin{array}{cc}
\frac{A}{\pi} & n=0 \\
\frac{-A}{\pi\left(n^{2}-1\right)} & n \text { even, } n \neq 0 \\
\frac{A}{j 4 n} & n= \pm 1 \\
0 & n \text { odd, }|n| \neq 1
\end{array}\right.
\end{gathered} .
$$

Steps to find d_{n} :

- Express $x(t)=x_{o}(t)+x_{e}(t)$, where $x_{o}(t)$ and $x_{e}(t)$ are the odd and even parts of $x(t)$.
- Determine the Fourier series coefficients of $x_{o}(t)=\frac{A}{2} \sin \omega_{0} t$.
- Determine the Fourier series coefficients of $x_{e}(t)$ (a full-wave rectified sine wave).
- Determine the Fourier series coefficients of $x(t)$ as the sum of the coefficients of $x_{o}(t)$ and $x_{e}(t)$.

