EC204: Networks & Systems Problem Set 8

1. The admittance function Y(s) has poles at $s = -1 \pm j1$ and two zeros.

The steady state current to a 6V dc input and a sinusoidal input $\sin t$ is given below.

v(t)	Steady state component of $i(t)$
6V dc	0 A
$\sin t V$	$0.6\sin t + 0.8\cos t$

Determine the steady state current for the input voltage $\sin 2t$ V.

2. Consider the network shown below.

- (a) Find the transfer function $H(s) = V_2(s)/V_1(s)$.
- (b) Sketch the magnitude of the frequency response function $\left. H(s) \right|_{s=j\omega}$ as a function of ω .

3. Find $V_o(s)/V_i(s)$ of the terminated 2-port network N in terms of R_o , R_L , and the z-parameters of N.

4. Find the y-parameters of the overall 2-port shown below, viewing it as the parallel interconnection of two 2-port T-networks.

5. Let the open circuit impedance matrix of network N be

Find $Z_{in}(s)$ in terms of r and $Z_L(s)$. If $Z_L(s)$ is 1/Cs, show that the network behaves like an inductor at the input terminals.