EC204: Networks & Systems Problem Set 7

1. Determine i(t) for $t \ge 0$ in the circuit shown below given that $i(0^-) = \rho$. Identify the steady state and transient components of the response.

2. Determine $v_C(t)$ for $t \ge 0$ in the circuit shown below given that steady state conditions have been reached at $t = 0^-$ with $v_s = 0$.

3. Find $v_C(t)$ for $t \ge 0$ in the circuit shown below assuming that steady state has been reached before the switch is opened.

4. Find $\frac{dv_C}{dt}$, $\frac{d^2v_C}{dt^2}$, and $\frac{d^3v_C}{dt^3}$ all at $t = 0^+$ in the circuit shown below assuming that steady state has been reached before the switch is opened.

- 5. (a) Find $y_1(t)$ and $y_2(t)$ for $t \ge 0$ given that x(t) = 3 for t < 0 and x(t) = 6 for $t \ge 0$.
 - (b) Identify the components of $y_1(t)$ and $y_2(t)$ corresponding to the characteristic (or natural) modes.

6. For an LTIC system described by the system function $H(s) = \frac{s+3}{(s+2)^3}$, find the following:

- (a) Impulse response
- (b) Steady state response to the input 10u(t)
- (c) Steady state response to the input $e^{j2t}u(t)$.
- 7. The output of an LTI system (with zero initial conditions) to the input u(t) is $[4e^{-t} 3e^{-2t}]u(t)$. Find (a) the impulse response, (b) the system function, (c) the response to the input $e^{-4t}u(t)$, and (d) the steady state response to the input $\cos 2t$.
- 8. Sketch the pole-zero plot corresponding to the following system functions: (a) $\frac{s-2}{s^2+8s+15}$, (b) $\frac{s+1}{(s+2)^2(s+3)}$, (c) $\frac{2s^2+s+1}{s(s+2)}$, and (d) $\frac{2s+1}{(s+2)(s^2+1)^2}$. Which of the above system functions correspond to BIBO stable systems?
- 9. A system has a transfer function with poles $s = -1 \pm j$ and a zero at s = -a. The response of this system to a step input has a term of the form $K_2 e^{-t} \sin(t + \phi)$. Express K_2 in terms of a. Plot the value of K_2 as a function of a for values of a between 0 and 5.