EC204: Networks \& Systems
 Problem Set 4

1. A signal $x(t)$ can be expressed as the sum of even and odd components as $x(t)=x_{e}(t)+$ $x_{o}(t)$. (a) If $x(t) \Longleftrightarrow X(\omega)$, show that for real $x(t), x_{e}(t) \Longleftrightarrow \operatorname{Re}[X(\omega)]$ and $x_{o}(t) \Longleftrightarrow$ $j \operatorname{Im}[X(\omega)]$. (b) Verify these results for $x(t)=e^{-a t} u(t)$.
2. Sketch the following functions: (a) $\operatorname{rect}(t / 2),(\mathrm{b}) \operatorname{rect}((t-10) / 8)$, and $(\mathrm{c}) \operatorname{sinc}(t / 5) \operatorname{rect}(t / 10)$.
3. If $x(t) \Longleftrightarrow X(\omega)$, then show that $X(0)=\int_{-\infty}^{\infty} x(t) d t$ and $x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) d \omega$. Also show that $\int_{-\infty}^{\infty} \operatorname{sinc}(x) d x=\int_{-\infty}^{\infty} \operatorname{sinc}^{2}(x) d x=1$.
4. Find the Fourier transform of $x(t)$ shown below in three different ways: (i) directly through integration, (ii) using the time-differentiation property of the Fourier transform, and (iii) using the Fourier transform of the $\operatorname{rect}(\cdot)$ function and the convolution property of the Fourier transform. Sketch the Fourier transform $X(\omega)$.

5. Find the Fourier transform $X(\omega)$ of the signal $x(t)$ shown below.

6. Find the energy of the signal $x(t)=e^{-a t} u(t)$. Determine the frequency W (in rad/s) so that the energy contributed by the spectral components of all the frequencies below W is 95% of the signal energy E_{x}.
7. Use Parseval's theorem to show that the energy of the signal $x(t)=2 a /\left(t^{2}+a^{2}\right)$ is $2 \pi / a$.
8. If $f_{1}(t)=2 \operatorname{rect}(t / 4)$ and $f_{2}(t)=\operatorname{rect}(t / 2)$, then find $g(t)=f_{1}(t) \star f_{2}(t)$ (where \star represents convolution) and $G(\omega)$. Sketch the maginitude and phase of $G(\omega)$.
9. A signal $x(t)$ is bandlimited to $B \mathrm{~Hz}$. Show that $x^{n}(t)$ is bandlimited to $n B \mathrm{~Hz}$.
10. Prove the frequency-differentiation property (dual of the time-differentiation property): $-j t x(t) \Longleftrightarrow \frac{d X(\omega)}{d \omega}$. Using this property determine the Fourier transform of $t e^{-a t} u(t)$.
11. The Fourier tranform of the triangular pulse $x(t)$ shown below is $X(\omega)=\frac{1}{\omega^{2}}\left(e^{-j \omega}+j \omega e^{-j \omega}-1\right)$. Using this, find the Fourier transforms of $x_{1}(t)$ and $x_{2}(t)$ shown below.

