EC204: Networks \& Systems
 Problem Set 10

1. Consider the system with the state equation

$$
\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

and the output equation

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

Find $H_{32}(s)$.
2. Find the state vector \mathbf{x} for the system whose state equation is given by $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$, where

$$
\mathbf{A}=\left[\begin{array}{cc}
-12 & 2 / 3 \\
-36 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
1 / 3 \\
1
\end{array}\right]
$$

$\mathbf{u}=[u(t)]$ (i.e., unit step input), and the initial conditions are $x_{1}(0)=2$ and $x_{2}(0)=1$.
3. Switch S is closed at $t=0$ after steady state is reached in the network shown. Choosing v_{C} and i_{L} as state variables, and i as the output:
(a) Form the state and output equations.
(b) Find the zero-state, zero-input, and total reponses.

