
Cut-Set Bound

1 Upper Bounds on Relaying Rate

Though the unicast capacity of wireless networks is unknown, the upper bound on ca-
pacity is known. In [1], Cover et al defined the information theoretic cut-set bound
which serves an upper bound for any multi-terminal communications. This is a natural
extension of the Max-Flow Min-Cut theorem defined for multicommodity flow problems.
In this section, we study the cut-set upper bounds for full-duplex relay networks [1] and
half-duplex relay networks [2].

1.1 Full-duplex cut-set bound

Consider a relay network with m full-duplex wireless nodes defined by the graph G =
(V, E), where V = {1, 2, . . . , m} and E ⊆ {(u, v) : ∀ u, v ∈ V }. Let Xi and Yi be the
random variables which denote the channel input and channel output at Node i. The
network is defined by a probability distribution function p (y1, y2, . . . , ym|x1, x2, . . . xm).
Consider a unicast communication in this network from source S to destination D. Let
RS→D be the rate at which information is sent from source to destination. Let Ω and
Ωc be the partition of nodes in the network. The cut-set bound on the achievable rate
RS→D is defined in [1] and is reproduced here.

Theorem 1 If the rate RS→D is achievable, then there exists some probability distribu-
tion function p (x1, x2, . . . , xm) such that

RS→D ≤ min
Ω⊆V

I
(

XΩ; Y Ωc

|XΩc)

, (1)

where S ∈ Ω and D ∈ Ωc, X(Ω) = {Xi : i ∈ Ω} and Y Ωc

= {Yi : i ∈ Ωc}. The
maximum information flow RS→D across the cut-set edges is bounded by the conditional
mutual information.

1.2 Half-duplex cut-set bound

A communication network could be in many states as opposed to the full-duplex networks
where there is only one state. Examples of such networks include (i) a network of half-
duplex nodes, (ii) wireless networks where channel state information of each link is
modeled as finite Markov chains. M. Khojastepour et al, determined the cut-set bound
for networks with many states in [2]. We concentrate on the cut-set bound in [2] as we
are interested in designing relaying protocols for Gaussian half-duplex relay networks.

Suppose a half-duplex relay network operates in M states, Sk = (Ik, Jk), 1 ≤ k ≤ M ,
where Ik and Jk denote the nodes in transmit and receive mode in state Sk, respectively.
Assume state Sk is active for a fraction of time λk. The half-duplex cut-set bound on the
rate RS→D defined in [2] is described in the following theorem.
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Theorem 2 Assume the sequence of states Sk = (Ik, Jk), 1 ≤ k ≤ M is deterministic and
known to all nodes in the network. If the rate RS→D is achievable in a half-duplex network
with M states, then there exists a probability distribution function p (x1, x2, . . . , xm|k)
such that

RS→D ≤ sup
λk,

P

λk=1

min
Ω⊆V

M
∑

k=1

λkI
(

XΩ
k ; Y Ωc

k |XΩc

k

)

, (2)

where S ∈ Ω and D ∈ Ωc, X
(Ω)
k = {Xi : i ∈ Ω ∩ Ik} and Y

(Ωc)
k = {Yi : i ∈ Ωc ∩ Jk}.

The information rate from source to destination in a multiterminal communications
can be further maximized by considering a random sequence of states S1, S2, . . . , SM as
opposed to the deterministic sequence of states in Theorem 2. In [3], G. Kramer designed
communication protocols which utilizes the half-duplex modes to increase the information
rate in a relay channel. In our work, we restrict ourselves to the deterministic sequence
of states as in [2, 4, 5, 6].

1.3 Computation of cut-set bound for Gaussian relay networks

Cut-set bounds described in (1) and (2) are maximized over the probability distribution
functions. However, finding the optimal distribution is very difficult. Even if the optimal
distribution is known, computing the conditional mutual information terms in (1) and
(2) become cumbersome.

In this thesis, we are interested in Gaussian Relay Networks (GRNs). Let us assume
Node i has an average power constraint Pi and a noise variance σ2. In a Gaussian setting
also, the exact cut-set bound is difficult to compute as the optimal distribution depends
on the network topology and the desired communications. However, loosened cut-set
bounds can be computed easily for GRNs. We describe such computations for full-duplex
GRNs but the same applies to half-duplex GRNs. Let C̄FD denote the full-duplex cut-set
bound defined in (1) and is reproduced here as

C̄FD = max
p(x1,x2,...,xm)

min
Ω⊆V

I
(

XΩ; Y Ωc

|XΩc)

, (3)

where S ∈ Ω and D ∈ Ωc. Let us now interchange the maximum and minimum in (3).
Thus, C̄FD is upper bounded by

C̄FD ≤ min
Ω⊆V

max
p(x1,x2,...,xm)

I
(

XΩ; Y Ωc

|XΩc)

, (4)

Consider any cut Ω ⊆ V in GRNs. The cut edges from Ω to Ωc form a Mulitple
Input Multiple Output (MIMO) channel. Therefore, the conditional mutual informa-
tion max

p(x1,x2,...,xm)
I

(

XΩ; Y Ωc

|XΩc)

is equal to the capacity of the MIMO channel. This is

achieved by picking X1, X2, . . . , Xm as jointly Gaussian random variables. Therefore, the
full-duplex cut-set bound using the MIMO capacity is given by

C̄FD ≤ min
Ω⊆V

max
KΩ

x

CMIMO(KΩ
x , H), (5)
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where CMIMO(KΩ
x , H) = 1

2
log det(Ir +HKΩ

x H∗), t = |Ω|, r = |Ωc|, H = [hij ], i ∈ J, j ∈ I

is the channel matrix, hij is the channel gain from transmitter j to receiver i and KΩ
x

is the t × t covariance matrix of the random variables in XΩ which satisfies the power
constraint

trace(KΩ
x ) ≤ PΩ

tot =
∑

i∈Ω

Pi.

The covariance matrix KΩ
x which maximizes the MIMO capacity in (5) is computed by

solving a semi-definite programming [7]. Since KΩ
x is a positive semi-definite matrix with

trace constraint, PΩ
totIt −Kx is also a positive semi-definite matrix [8]. Also, log det(.) is

an increasing function on the cone of positive semi-definite matrices. As PΩ
totIt −KΩ

x is a
positive semi-definite matrix, the inequality

log det(PΩ
totIt) ≥ log det KΩ

x , (6)

holds for every Ω. Therefore, we replace KΩ
x by PΩ

tot in (5). Thus, the cut-set bound
becomes

C̄FD ≤ min
Ω⊆V

CMIMO(PΩ
totIt, H). (7)

We call the cut-set bound determined using (7) as the Total Power Constraint Full-
Duplex (TPC-FD) cut-set bound. The MIMO capacity in (7) is simply a function of the
total transmit power PΩ

tot and the channel matrix H . Hence, C̄FD can be evaluated easily
without optimizing the covariance matrix KΩ

x .
Let PΩ

max = max
i∈Ω

Pi be the maximum transmit power in the cut Ω. Therefore, PΩ
tot ≤

tPΩ
max. The bound in (7) thus becomes

C̄FD ≤ min
Ω⊆V

1

2
log det(Ir + tPΩ

maxHH∗),

≤ min
Ω⊆V

1

2
log det(tIr + tPΩ

maxHH∗),

≤ min
Ω⊆V

r

2
log t +

1

2
log det(Ir + PΩ

maxHH∗). (8)

This implies the TPC-FD cut-set bound grows linearly with the network size and of-
ten becomes loose for larger network size. However, using the above approach one can
determine a quick upper bound for any network topology.

The half-duplex cut-set bound for Gaussian relay networks can also be computed in
the same way by replacing the conditional mutual information with the MIMO capacity.
Let C̄HD denote the half-duplex cut-set bound. Using the matrix inequality in (6), C̄HD

can be written as

C̄HD ≤ sup
λk,

P

λk=1

min
Ω⊆V

M
∑

k=1

λkCMIMO(P k
totIq, Hk), (9)

where p = |Ωc∩Jk|, q = |Ω∩Ik|, P k
tot =

∑

i∈Ω∩Ik

Pi and Hk is the p×q channel submatrix. We

call the cut-set bound determined using (9) as the Total Power Constraint Half-Duplex
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(TPC-HD) cut-set bound. For a given channel conditions and transmit power constraint,
C̄HD is maximized by optimal choosing the time sharing variables λ1, λ2, . . . , λM . The
optimization in (9) is a linear program and can be solved efficiently for λ1, λ2, . . . , λM [7].

1.3.1 Illustration of TPC-HD bound:

We consider the diamond channel to illustrate the computation of total power constraint
half-duplex cut-set bound. The cut-set upper bound C̄HD defined in (9) is computed by
solving the following linear optimization problem.

max C̄HD (10)

subject to

C̄HD ≤ λ1C

(

(h2
12 + h2

13)P

σ2

)

+ λ2C

(

h2
13P

σ2

)

+ λ3C

(

h2
12P

σ2

)

,

C̄HD ≤ λ1C

(

h2
13P

σ2

)

+ λ2

(

C

(

h2
13P

σ2

)

+ C

(

h2
24P

σ2

))

+ λ4C

(

h2
24P

σ2

)

,

C̄HD ≤ λ1C

(

h2
12P

σ2

)

+ λ3

(

C

(

h2
12P

σ2

)

+ C

(

h2
34P

σ2

))

+ λ4C

(

h2
34P

σ2

)

,

C̄HD ≤ λ2C

(

h2
24P

σ2

)

+ λ3C

(

h2
34P

σ2

)

+ λ4C

(

(h24 + h34)
2P

σ2

)

,

M
∑

k=1

λk = 1, λk ≥ 0.

An upper bound on C̄HD is found by solving the dual problem of (10) where we rely on
the fact that every feasible solution of the dual problem gives an upper bound on the
primal problem. Since the network is symmetric, the primal and dual programs have the
same form. The dual optimization problem is

min C̄HD, (11)

subject to

C̄HD ≥ τ1C

(

(h2
12 + h2

13)P

σ2

)

+ τ2C

(

h2
13P

σ2

)

+ τ3C

(

h2
12P

σ2

)

,

C̄HD ≥ τ1C

(

h2
13P

σ2

)

+ τ2

(

C

(

h2
13P

σ2

)

+ C

(

h2
24P

σ2

))

+ τ4C

(

h2
24P

σ2

)

,

C̄HD ≥ τ1C

(

h2
12P

σ2

)

+ τ3

(

C

(

h2
12P

σ2

)

+ C

(

h2
34P

σ2

))

+ τ4C

(

h2
34P

σ2

)

,

C̄HD ≥ τ2C

(

h2
24P

σ2

)

+ τ3C

(

h2
34P

σ2

)

+ τ4C

(

(h24 + h34)
2P

σ2

)

,

M
∑

k=1

τk = 1, τk ≥ 0.
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The solution of (11) gives an upper bound on C̄HD. However, this solution is not tight
always. In [4], closed form expressions are determined by solving (11) for all values of ∆.
The achievable rates under the MDF-BC and MDF-MAC protocol are also derived and
compared with the upper bound. The performance of both protocols are atmost 0.71
bits away from capacity.

1.4 Tight upper bounds for Gaussian relay networks

The cut-set bounds in (7) and (9) are easier to compute using the covariance matrix
inequality in (6). However, these bounds are not tight for large networks as noticed in
(8). Also, these bounds use a total power of tPΩ

tot whereas the total power available
is only PΩ

tot for a cut Ω of size t. Let us now derive tight upper bounds for GRNs in
this subsection. In the new upper bounds, we determine the MIMO capacity with strict
power constraints, namely, sum power constraint and per-user power constraints.

In a MIMO channel with sum power constraint, the capacity is achieved by diagonl-
izing the channel. This is done by transmitter precoding, waterfilling power allocation
along the eigen channels and receiver post processing [9]. The exact MIMO capacity of
a t× r MIMO channel with channel matrix H and sum power constraint Ptot is given by

C
wf
MIMO(Ptot, H) =

nmin
∑

i=1

1

2
log

(

1 +
P ∗

i λ2
i

σ2

)

, (12)

where nmin is the number of non-zero singular values of H , λ1, λ2, . . . , λnmin
are the

singular values of H and P ∗
1 , P ∗

2 , . . . , P ∗
nmin

are the waterfilling power allocation levels
such that

P ∗
i =

(

µ −
σ2

λ2
i

)+

,

∑

i

P ∗
i = Ptot.

Each cut Ω in a Gaussian multi-terminal network is a MIMO channel and the available
sum power PΩ

tot. To determine a tight upper bound, we utilize the MIMO capacity in (12).
Thus, the conditional mutual information of each cut is replaced by C

wf
MIMO(Ptot, H),

where H is the channel matrix of cut edges. The tight cut-set upper bound with sum
power constraint is given by

C̄FD ≤ min
Ω⊆V

C
wf
MIMO(PΩ

tot, H). (13)

The upper bound in (13) is called as WaterFilling Full-Duplex (WF-FD) cut-set upper
bound. As the sum power constraint is not violated, WF-FD bound is always tighter than
TPC-FD bound. However, waterfilling policy is not practical as it assumes transmitters
can share the power to maximize the MIMO capacity.

A tighter cut-set bound for GRNs can be obtained by evaluating the MIMO capacity
with per user power constraint rather than the sum power constraint. The MIMO sum
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capacity with per user power constraint is obtained by solving the following optimization
problem.

max
KΩ

x,pu

C
pu
MIMO(KΩ

x,pu, H) (14)

subject to

C
pu
MIMO(KΩ

x,pu, H) =
1

2
log det(Ir + HKΩ

x,puH
∗),

KΩ
x,pu � 0,

diag(KΩ
x,pu) � {Pi : i ∈ Ω}.

The notation � indicates the covariance matrix KΩ
x,pu is a positive semi-definite matrix

and � denotes the elementwise inequality. The above optimization is a semi-definite
programming which searches for KΩ

x,pu over the cone of positive semi-definite matrices
[7]. The tight cut-set upper bound using per user power constraint is given by

C̄FD ≤ min
Ω⊆V

C
pu
MIMO(KΩ

x,pu, H). (15)

The bound in (15) is called as Per-User Power Constraint Full-Duplex (PUPC-FD) cut-
set bound. This bound is tighter than the TPC-FD and WF-FD bounds as the MIMO
capacity is always smaller with per user power constraints.

In all the upper bounds for GRNs discussed so far in this section, we computed the
conditional mutual information of each cut as the MIMO capacity. The cut capacity
is maximized by the Gaussian distribution, N (0, KΩ

x ). The covariance matrix KΩ
x is

optimized for each cut independently. But, the transmit random variables XΩ are not
disjoint for each cut, Ω. The correlation among the random variables is not consistent
across the cuts for each choice of KΩ

x . For example, in the diamond channel, the cut Ω1 =
{1, 2} is maximized when the random variables X2 and X3 are independent whereas the
cut Ω2 = {1, 2, 3} is maximized when X2 = X3, i.e., X2 and X3 are fully correlated. So,
we can tighten the upper bound by making the correlation among the random variables
consistent across the cuts. Let Kx be the m × m covariance matrix of the transmit
random variables X1, X2, . . . , Xm present in the network. Let KΩ

x,corr be the conditional
covariance matrix of the random variables in XΩ given the random variables in XΩc

. For
Gaussian random variables, KΩ

x,corr is computed from KΩ
x using Schur complement. Let

Σ11, Σ22 be the covariance matrices of the random variables in XΩ and XΩc

, respectively.
Let Σ12, Σ21 be the cross covariance matrices of the random variables in XΩ and XΩc

.
Therefore, KΩ

x is written as

KΩ
x =

[

Σ11 Σ12

Σ21 Σ22

]

The conditional covariance matrix KΩ
x,corr is thus given by

KΩ
x,corr = Σ11 − Σ12Σ

−1
22 Σ21.

Using the correlation, the cut-set upper bound of Gaussian multi-terminal networks is
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Bound Expression Optimization
type

FD C̄FD = max
p(x1,x2,...,xm)

min
Ω⊆V

I
(

XΩ; Y Ωc

|XΩc)

-

TPC-FD C̄FD ≤ min
Ω⊆V

CMIMO(PΩ
totIt, H) Linear

WF-FD C̄FD ≤ min
Ω⊆V

C
wf
MIMO(PΩ

tot, H) Non-linear

PUPC-FD C̄FD ≤ min
Ω⊆V

C
pu
MIMO(KΩ

x,pu, H) SDP

C-FD C̄FD ≤ min
Ω⊆V

C
pu
MIMO(KΩ

x,corr, H) SDP

Table 1: Cut-set bound expressions for full-duplex GRNs

computed as

C̄FD ≤ min
Ω⊆V

max
N (0,Kx)

I
(

XΩ; Y Ωc

|XΩc)

,

≤ min
Ω⊆V

C
pu
MIMO(KΩ

x,corr, H). (16)

The Correlation Full-Duplex (C-FD) cut-set bound in (16) is the tightest bound described
so far. However, computing the C-FD bound is difficult as the network is optimized
altogether instead of optimizing the individual cuts. For large network sizes, evaluating
C-FD bound is cumbersome.

The correlation bound extends naturally for half-duplex networks. In a half-duplex
network, the cut-set bound is maximized over the probability distribution function p (x1, x2, . . . , xm|k)
which is defined for each state Sk. To compute the losened cut-set bound, we chose
p (x1, x2, . . . , xm|k) as N (0, Kk,Ω

x ) for each state Sk and cut Ω. As in the full duplex cut-
set bound, we utilize correlation to tighten the cut-set bound for half-duplex networks.
The correlation bound for half-duplex networks is defined as

C̄HD ≤ sup
λk

min
Ω⊆V

max
p(x1,x2,...,xm|k)

M
∑

k=1

λkI
(

XΩ
k ; Y Ωc

k |XΩc

k

)

,

≤ sup
λk

min
Ω⊆V

max
N (0,Kk

x)

M
∑

k=1

λkI
(

XΩ
k ; Y Ωc

k |XΩc

k

)

,

≤ sup
λk

min
Ω⊆V

max
N (0,Kk

x)

M
∑

k=1

λkC
pu
MIMO(Kk,Ω

x,corr, Hk), (17)

where Kk
x is the optimal covariance matrix for state Sk and Kk,Ω

x,corr is the conditional
covariance matrix of the random variables in XΩ

k given XΩc

k . Tables 1 and 2 summarize
all the bounds for full-duplex GRNs and half-GRNs discussed in this section for quick
reference.

1.5 Numerical Evaluation

The diamond channel wit half-duplex relays is considered for numerical evaluation of
the cut-set bounds. The channel conditions are set as follows: (i) channel condition A:
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Bound Expression Optimization
type

HD C̄HD = sup
λk

max
p(x1,...,xm|k)

min
Ω⊆V

M
∑

k=1

λkI
(

XΩ
k ; Y Ωc

k |XΩc

k

)

-

TPC-HD C̄FD ≤ sup
λk

min
Ω⊆V

M
∑

k=1

λkCMIMO(P k
totIq, Hk) Linear

WF-HD C̄FD ≤ sup
λk

min
Ω⊆V

M
∑

k=1

λkC
wf
MIMO(P k

tot, Hk) Non-linear

PUPC-HD C̄FD ≤ sup
λk

min
Ω⊆V

M
∑

k=1

λkC
pu
MIMO(Kk,Ω

x,pu, Hk) SDP

C-HD C̄FD ≤ sup
λk

min
Ω⊆V

M
∑

k=1

λkC
pu
MIMO(Kk,Ω

x,corr, Hk) SDP

Table 2: Cut-set bound expressions for half-duplex GRNs

h12 = h13 = α, h24 = 0.25 and h34 = 1, and (ii) channel condition B: h12 = h13 = α,
h24 = 1 and h34 = 1.
Channel condition A: Fig. 1 shows the performance of the MDF-BC and MDF-MAC
protocols and comparison of the cut-set bounds defined in the previous subsection under
channel condition A. The MDF-MAC protocol is used to find the achievabe rate when
∆ > 0 (α ≥ −3dB) and the MDF-BC protocol is used when ∆ < 0 (α ≤ −3 dB). We
notice that the bounds are in the increasing order for all values of α, i.e., TPC −HD ≥
WF−HD ≥ PUPC−HD ≥ C−HD as described in the previous section. For α ≤ −5.57
dB, the cut Ω = {1} dominates. Since there is only one transmitter in this cut, all four
cut-set bounds yield the same value. For −5.57 ≤ α ≤ 1.01 dB, the cut Ω = {1, 2}
dominates. We observe the cut-set bound obtained using different methods are slightly
different. The methods show significant difference when α ≥ 1.01 dB where the sink cut
Ω = {1, 2, 3} is dominant. The correlation bound is tight because the random variabes
X2 and X3 are correlated. PUPC-HD cut-set bound allows full cooperation across the
transmitters in State S4 to maximize the cut capacity. However, the cut-capacity in
States S2 and S3 are maximized by choosing X2 and X3 independent. Because of this
inconsistency, PUPC-HD bound is looser than the C-HD bound. TPC-HD bound and
WF-HD bound allocate all the power along the eigen channel in State S4 to maximize
the min-cut capacity. This power allocation policy is very impractical which makes those
bound looser. The achievable rate of the MDF protocol is very close to the correlation
bound.
Channel condition B: Fig. 2 shows the comparison under channel condition B. When
∆ ≤ 0 (α < 0 dB), the cut-set bound is determined by the cut Ω = {1}. So, all the
four methods yield the same value as there is no power violation with one transmitter.
When ∆ > 0 (α ≥ 0 dB), the cut-set bound is determined by the sink cut Ω = {1, 2, 3}.
Since there is only eigen channel and h24 = h34 in State S4, the PUPC-HD bound, WF-
HD bound and TPC-HD bound yield the same value. The correlation bound is tight as
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Figure 1: Performance of the MDF protocol in the diamond channel, Channel condition
A

it optimizes the network altogether which makes the correlation consistent among the
states and cuts. The MDF protocol achieves capacity for ∆ = 0 and is very close to the
cut-set bound for all vaues of α.
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