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Detection of Anomalous Data Streams
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e Each data stream independent and identically distributed
(i.i.d.) samples from an unknown distribution

* Applications: Sensor networks, network monitoring



Hypothesis Testing
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* S hypotheses
* Hypothesis i: The i th stream is anomalous



Nonparametric Sequential Hypothesis
Testing

* Observations arrive sequentially

* One new sample observed in each stream at each
time

* Sequential decision rule consists of:

* A stopping rule (whether or stop or continue sampling)
* A decision (if stopping, what is the decision)

* Nonparametric: Unknown distributions p and g

*pP#q
* Also called Universal or Distribution-free tests
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e Distributions
for clusters

e Distributions
in the same
cluster are
closer

* Need to cluster
the streams

* Unknown
distributions
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Comparing distributions

* Known distributions
* Compute likelihood under each distribution

* Unknown distributions + Parametric model for
distributions
* Generalized likelihood instead of likelihood
e Parameters estimated under each hypothesis and

plugged into likelihood
* Unknown distributions, Nonparametric

 Maximum Mean Discrepancy (MMD)
e Kolmogorov-Smirnov Distance (KSD)



Maximum Mean Discrepancy (MMD)

MMD(p,q) = rcp  Eplf(X)] = Eq[f (V)]

e X~p and Y~q,
* f areal — valued function from class F

e F:Unit ballin a Reproducing Kernel Hilbert Space
(RKHS) with kernel k(.,.)

e Estimate with finite number of samples
* Convergence as humber of samples grows

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., & Smola, A. (2012). A kernel two-sample test. The Journal of
Machine Learning Research, 13(1), 723-773.



MMD Estimate and Convergence

Gaussian Kernel
RN
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M,(i,j,n) = ﬁZlim(k(xibxim) + k(i1 Xim) — k(i1 Xjm) — k(X0 Xim))

M, (i, j,n) converges a.s. to MMD(p, q) as n —»

Sequential update with O(n) computations

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., & Smola, A. (2012). A kernel two-sample test. The Journal of
Machine Learning Research, 13(1), 723-773.



Fixed Sample Size (FSS) vs. Sequential (SEQ)

* Performance metrics
* Universal consistency
* Universal exponential consistency
* Error Exponent

e FSS: As number of samples grows
* SEQ: As the stopping threshold grows

* Sequential tests can stop fast for good realizations
* Expected number of sample required reduces



Our Work

e Sequential test for
* Number of anomalous streams L =1
e KnownorUnknownl:1 <L <A
e UnknownL:0 <L <A

* Expected number of samples lower than that of FSS
test for the same error probability

e Universal consistency (or) Universal exponential
consistency

S. C. Sreenivasan and S. Bhashyam, "Sequential Nonparametric Detection of Anomalous
Data Streams," in IEEE Signal Processing Letters, vol. 28, pp. 932-936, 2021.



Sequential Test: Single Anomaly Case

* Find
e Stream with maximum minimum distance from other
streams

* Corresponding max-min distance

t(n) = argmax min M, (i, j, n)
i J#i

l J#F1

e Compare max-min distance with a threshold
C
F(n) > n_“

* Choice of alpha



Sequential Test: Multiple Anomaly Case

* Find
e Subset A with maximum minimum distance from other subsets
* Corresponding max-min distance
e Search over all subsets of size L (knownlLorl <L < A)

i(n) =argmaxmin min M, (i,j,n
() 514 icA jeS | A u(l),1)

[(n) = maxmin min M, (i,j,n
() A icAjeS|A u(b),m)

e Compare max-min distance with a threshold

C
I'(n) > —a



Possibility of No Anomalies0 <L < A

* Additional time-out parameter T
e controls error probability when there are no anomalies

* Use previous test up to T
* Stop if number of samples exceeds T

C
n0.5

r(n) >



Properties of the Proposed Test

* Stopping time N, Maximal error prob Py 4«

* Finite stopping time P;|[N < oo] = 1 for each i

* Universal consistency gim Pyhix =0
— 00

* When L > 0, we also have universal exponential
consistency

32 log P
EL[N] S . Og max
MMD*(p, q)



Proof outline: Single Anomaly Case

* Finite stopping proof
* Exponential bound P;[N > n] forn > n,

* Error bound
* Split into two terms
* Error when N > ngy, Error when N < n,
e GoestoOas(C —

.E[

 Combine above results to get exponential consistency

N

1
>0 asC > o
C MMD?(p,q)




Simulation Results: Single Anomaly
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S. Zou, Y. Liang, H. V. Poor and X. Shi, "Nonparametric Detection of Anomalous Data Streams," in IEEE
Transactions on Signal Processing, vol. 65, no. 21, pp. 5785-5797, 1 Nov.1, 2017.



Simulation Results: Single Anomaly
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Transactions on Signal Processing, vol. 65, no. 21, pp. 5785-5797, 1 Nov.1, 2017.



Simulation Results: Single Anomaly
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e Distributions are
closer in this case
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S. Zou, Y. Liang, H. V. Poor and X. Shi, "Nonparametric Detection of Anomalous Data Streams," in IEEE
Transactions on Signal Processing, vol. 65, no. 21, pp. 5785-5797, 1 Nov.1, 2017.



Simulation Results: Single Anomaly

0 * N(0,1) and N(1.2,1)
—e— NP-SEQ-1 .
——a=2 * Higher alpha
1} ez reduces the
o~ threshold faster
I
3 L
0 10 20 30 40 50 Threshold —

E[N]



SimulationResults: 0 < L < A
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b) False-alarm error




Clustering

» S data streams
» K clusters

» M, distributions in
cluster k
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Assumptions (for the analysis)

* Minimum inter-cluster distance dy
* Maximum intra-cluster distance d; < dy




FSS Non-parametric Clustering

e Use pairwise distances

* Cluster based on k-medoid clustering
 Number of clusters K known (K-MED)
* Number of clusters K unknown

* Steps
* Center and Cluster initialization
* Update till convergence

* Universal exponential consistency (n — o)

T. Wang, Q. Li, D. J. Bucci, Y. Liang, B. Chen and P. K. Varshney, "K-Medoids Clustering of Data Sequences
With Composite Distributions," in IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2093-2106,
15 Aprill5, 2019.



Our Work: Sequential Clustering
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Properties of the Proposed Test

* Stopping time N, Maximal error prob Py 4«

* Finite stopping time
* Universal exponential consistency

e At least 2 clusters assumed

Threshold L

n0.5



Simulation Setting




Simulation Setting
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Results: Known number of clusters

FSS - = MMD, A = 0-4- MMD, A = 0.1
S . m= KSD, A = D=k= KSD, 1 = 0.1

SEQ —=— MMD, 1 = 0 ——MMD, A = 0
6 —=— KSD, A =0—4—KSD, A =0.1
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 Gamma distributions case: KSD better than MMD
* Fewer samples required than FSS clustering on average




Results: Known number of clusters
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* Gaussian distributions case: MMD better than KSD
* Fewer samples required than FSS clustering on average



Results: Unknown number of clusters
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e Gaussian distributions case, K-MED + Merge
* Fewer samples required than FSS clustering on average



Multiple Anomalies
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e S =5data streams
e A=2
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* NP-SEQ-A: Known A
e NP-SEQ-U: Unknown A



Multiple Distinct Anomalies
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* Need more than 2
clusters for this problem




Summary
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ly consistent sequential tests for anomaly



Possible Extensions

* More general cases

* d; > dy, for both FSS and Sequential settings
* Higher dimensional observations

* Clustering with bandit feedback/controlled
sampling

* More than consistency
* Bound on error exponent and optimality
» Second-order asymptotic analysis

https://www.ee.iitm.ac.in/~skrishna/



