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Challenges in Wireless Communication

Fading

: e Interference
(time-variations)

Slow: Learn and Adapt | l
Fast: Adapt to the average This talk



Interference management
in Cellular Systems

* Avoid interference
* Frequency planning
* Time-division and frequency-division

Early
Cellular
Networks

* Network of point-to-point links
(1G, 2G)

* Basic building block: point-to-point link



Interference management in 3G

e Power control
* Higher frequency reuse
 Treat interference as noise

3G
Cellular
Networks

* Network of basic building blocks
* Multiple access channels
* Broadcast channels



Interference management in 4G

* Interference cancellation

* Interference coordination
Modern

Cellular * Network of basic building blocks

Networks * Multiple access channels
e Broadcast channels

* Link adaptation
* Point-to-point links




Adaptive Interference Management

* Adaptive interference management
* Choose between various schemes

Future * Based on channel conditions

Cellular

Networks

* Network of basic building blocks
* Interference channels




Rest of this talk:
Multicell Downlink Beamforming

Base-station 1 Base-station 2

oy 11y

Mobile Mobile 2

* Problem: Design beamforming vectors at each BS
* Distributed solution with limited exchange of information



MISO Interference Channel Model

Beamformer Single-user
8 detection
Beamformer Single-user
W detection
2

Beamforming optimal under Gaussian codebooks + single-user detection
Zhang & Cui 2010, Shang, Chen & Poor 2009



Acllievable Rate Region

Rl
 Can be non-convex

* Boundary points to be determined

* Pareto optimal rate vector: Not possible to improve any component
without decreasing at least one other component



Finding the beamforming vectors

* Weighted sum rate maximization

h w, | hZ,w, |’
B log(l + | 11w1| ) + [, log (1 + h | 22W2| )

|h},w,|% + of w2 + o3

e Power constraints

[wy]|* < Py
Iw:[I? < P,

e Centralized solution



Distributed solution
with limited coordination

BS1 BS 2
2
H 2 |h12{2W2|
log[ 1 + |hi,wi| log<1+ T
F21 + 0'12 12 0-2
[
2 2
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* There exist interference thresholds corresponding to each
boundary point

e Local channel information
Zhang & Cui 2010



Solution for given interference
thresholds

max VY
Y1,01,01,¢1

Vi + 6% < P;

ayZ + bé? + 2aby,6, cos(0; — ¢p;) < Ty,

* Power along channel dlrectlon (y#) and along
orthogonal direction (6%)

M. Vishnu Narayanan, S. Bhashyam, Pareto Optimal Distributed Beamforming for the Multi-band Multi-cell
Downlink, Proceedings of IEEE Global Communications Conference (GLOBECOM 2017), Singapore, Dec. 2017.




Solution for given interference
thresholds

* Closed form solution
51/\

21 'yl
* Power along channel dlrectlon (y#) and along
orthogonal direction (6%)



Weighted sum rate maximization
* |nitialize {Fl-j}

e Use closed form solution for given
thresholds {Fl-j}

* Update interference thresholds
{Fl-j} using gradient ascent



Multiple band case

Flat fading model so far

S A

Multiple bands or
resource blocks

Frequency
selective
channel



Power allocation + Beamforming

maxz 'Blz log| 1+ ‘h kwlk‘
Wik} ‘

kw]k‘ + O'

Zkllwikllz < P; foralli

* Sum power constraint over all bands

* Beamforming vector for each band



Power allocation + Beamforming

‘hgkwik ‘2

max : log| 1+
{wik},{aik}ziﬁ lzk 5 h

2
H 2
jikwjk‘ T Ojk

Wi ||? < o P; foralli, k
Y =1 forall i

* Introduce variables {a; }
* Power in band k of cell i = P, = a;; P;
* For a given power allocation {«a;; }, overall multi-

band problem reduces to K single-band problems,
one for each band



Pareto boundary: k-band & 1-band

(R{,R,) is Pareto optimal
implies
(R, Ry)) is Pareto optimal in each band k.
* For a given power allocation, overall multi-band

problem reduces to K single-band problems, one for
each band



Beamforming for each band

2
H 2
hjikvvjk‘ + o0},

Wi | < oy P; forall i

* Solve for each band k, for a given{a;; }



Beamforming: Distributed solution

‘hukwik‘z
max log| 1 + 3 2

Wik

Wi | < oy P; forall i

‘h szk‘ kfor all j

* Solve for each band k and each cell i for given

{Tiin ) {on



Power allocation + Beamforming

2
h, Wi, | o, P;
ma 3 Y tog(14+ Ml
Wik ikl {Fl]k} ]lk + O-lk

|h kwlk| [jxforalli,j, k
W || <1 foralli, k
Y i =1 foralli, k

* Power allocation step te = Tikey Pkt
» Waterfilling



Alternating Maximization

Initial Power allocation
E.g. uniform

Optimize beamformer for
each band

Optimize power
allocation




Gradient ascent convergence

* Convergence to local
maxima possible

wsr

* Try multiple
initializations and
choose the best

R/R

5 10 5 20 25 30 35 40
[terations




AM convergence
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Simulation Results: 2-band
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Simulation Results: 2-band
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Simulation Results: 2-band
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Simulation Results: 3-band
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Simulation Results: 10-band
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Simulation Results: 10-band
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Simulation Results: Frequency selective

channel
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Summary

* Beamforming for the multicell downlink
 Single-user detection and Gaussian codebooks

e Distributed solution with limited coordination

* Single band case:
* Closed form solution for given interference constraints
* Gradient ascent for weighted sum rate maximization

* Multiple band case:

* Alternating maximization: Power allocation and beamforming
» Significant gain over equal power allocation, MRT, ZF

https://www.ee.iitm.ac.in/~skrishna/



