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Abstract

The work in this thesis is concerned with two complementary aspects of wireless networks

research; performance analysis and resource optimization. The first part of the thesis

focusses on the performance analysis of IEEE 802.11(e) wireless local area networks. We

study the distributed coordination function (DCF) and the enhanced distributed channel

access (EDCA) MAC of the IEEE 802.11(e) standard. We consider n IEEE 802.11(e)

DCF (EDCA) nodes operating as a single cell; by single cell, we mean that every packet

transmission can be heard by every other node. Packet loss is attributed only to simul-

taneous transmissions by the nodes (i.e., collisions). Using the well-known decoupling

approximation [18], we characterize the collision behaviour and the throughput perfor-

mance of the WLAN with a set of fixed point equations involving the backoff parameters

of the nodes. We observe that the fixed point equations can have multiple solutions, and

in such cases, the system exhibits multistability and short-term unfairness of throughput.

Also, the fixed point analysis fails to characterize the average system behaviour when

the system has multiple solutions. We then obtain sufficient conditions (in terms of the

backoff parameters of the nodes) under which the fixed point equations have a unique so-

lution. For such cases, using simulations, we observe that the fixed point analysis predicts

the long term time average throughput behaviour accurately. Then, using the fixed point

analysis, we study throughput differentiation provided by the different backoff parame-

ters, including minimum contention window (CWmin), persistence factor and arbitration

interframe space (AIFS) of the IEEE 802.11e standard. Finally, we extend the above

results to the case where the receiver supports physical layer capture.
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In the second part of the thesis, we study resource allocation and optimization prob-

lems for a variety of wireless network scenarios. For a dense wireless network, deployed

over a small area and with a network average power constraint, we show that single cell

operation (the channel supports only one successful transmission at any time) is through-

put efficient in the asymptotic regime (in which the network average power is made large).

We show that, for a realistic path loss model and a physical interference model (SINR

based), the maximum aggregate bit rate among arbitrary transmitter-receiver pairs scales

only as Θ(log(P̄ )), where P̄ is the network average power. Spatial reuse is ineffective

and direct transmission between source-destination pairs is the throughput optimal strat-

egy.Then, operating the network with only a single successful transmission permitted at

a time, and with CSMA being used to select the successful transmitter-receiver pair, we

consider the situation in which there is stationary spatio-temporal channel fading. We

study the optimal hop length (routing strategy) and power control (for a fading channel)

that maximizes the network aggregate throughput for a given network power constraint.

For a fixed transmission time scheme, we study the throughput maximizing schedule under

homogeneous traffic and MAC assumptions. We also characterize the optimal operating

point (hop length and power control) in terms of the network power constraint and the

channel fade distribution.

It is now well understood that in a multihop network, performance can be enhanced if,

instead of just forwarding packets, the network nodes create output packets by judiciously

combining their input packets, a strategy that is called “network coding.” For a two link

slotted wireless network employing a network coding strategy and with fading channels, we

study the optimal power control and optimal exploitation of network coding opportunities

that minimizes the average power required to support a given arrival rate. We also study

the optimal power-delay tradeoff for the network and show that the minimum average

queueing delay scales as Ω
(

1
v

)
for an excess average power of O(v).

Finally, we study a vehicular network problem, where vehicles are used as relays to

transfer data between a pair of stationary source and destination nodes. The source node

has a file to transfer to the destination node and we are interested in the delay minimizing
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schedule for the vehicular network. We characterize the average queueing delay (at the

source node) and the average transit delay of the packets (at the relay vehicles) in terms

of the vehicular speeds and their interarrival times, and study the asymptotically optimal

tradeoff achievable between them.
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Chapter 1

Introduction

Information is “key” to success in the modern world, and connectivity is essential to share

information. From cellular telephony to satellite television, from the public Internet to

ad hoc sensor networks, the nature of information and the network that carries the in-

formation varies greatly. The increasing user demands have lead to a variety of network

architectures, from the simple point-to-point wired networks to the more complex dis-

tributed ad hoc wireless networks, each having evolved with a class of applications in

mind.

Communication networks can be broadly classified into wired and wireless systems

depending on the medium used as the channel. Recent advances in the areas of optical

communication and switching have permitted overprovisioning as a viable solution for

wired networks, to meet modern day traffic demands. However, wireless networks continue

to be resource limited, since the available RF spectrum needs to be shared among several

competing wireless devices. The increasing popularity of wireless networks, due to their

ease of deployment and their support for mobility, has only increased the performance

expectations from these systems. It has thus become increasingly important to understand

the performance limitations of the various wireless network technologies, and to device

efficient resource allocation algorithms for them.

A fundamental understanding of the capabilities and the limitations of the wireless

channel and the users is essential here. For example, when the nodes in the network

1
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have an average or max power constraint, then the maximum bit rate (or throughput)

achievable is bounded by the physics of the wireless channel. Similarly, when the nodes

are not collocated, then we need to seek a distributed scheduling algorithm to operate

the network; a centralized scheduler like a base station is not an option. Now, resource

optimization involves the need to design such algorithms that achieve the various network

performance objectives, given the spectrum and user constraints. Resource optimization

helps us know the fundamental limits of the network, and also provides us the way to

operate the network efficiently. For example, in [50], the authors study the capacity of

large ad hoc wireless networks and show that the end-to-end user throughput scales as

O
(

1√
n

)
, where n is the number of users in the network. Also, [50] suggests multihopping

and spatial reuse to achieve the optimal throughput.

While multihopping is clearly the optimal strategy for large ad hoc wireless networks, it

might still be practical to operate the networks in a single hop mode (direct transmission),

due to its ease of operation and the economics of operating the network. In this sense, the

way a practical network is operated might be very different from the optimal operation

suggested by the analysis. Also, most analyses do not account for the overheads associated

with operating the network (like interference management, routing overheads), which are

specific to the standards and the protocols involved in the system. Performance modeling

and analysis helps one understand the deployed networks, to ensure that the network

is provisioned appropriately and that the users see the desired quality of service while

using minimal resources. Also, system modeling and performance analysis is the first

step in resource optimization and in the design of resource allocation algorithms. We see

performance analysis and resource optimization as two facets of the same problem and

we study them both in this thesis.

In this thesis, we study scheduling and resource allocation problems in a variety of

wireless networks, including WiFi networks, ad hoc (and sensor) networks and vehicular

networks. We consider a collection of wireless nodes whose channel access is determined

either by a centralized scheduler (e.g., an access point or a base station) or by a distributed

medium access protocol (e.g., the IEEE 802.11(e) MAC). The nodes are assumed to be
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resource constrained, for example, the nodes could be average or max power limited. Our

performance metrics of interest are the long term time average throughput and the long

term time average queueing delay in the system. Our approach is to model the system

performance in terms of the channel, MAC and node parameters, and then we analyse

and optimize it to provide the required quality of service.

The work in this thesis can be categorized into two parts. The first part of the thesis

focusses on the performance analysis of IEEE 802.11(e) WLANs. We study the distributed

coordination function (DCF) and the enhanced distributed channel access (EDCA) MAC

of the IEEE 802.11(e) standard. We consider n IEEE 802.11(e) DCF (EDCA) nodes

operating as a single cell. By single cell, we mean that every packet transmission can be

heard by every other node. Hence, the backoff engine and the transmission attempts of

the nodes are synchronized within the cell. We assume that the nodes are saturated, i.e.,

the nodes always have packets to send, and we are interested in the long term time average

throughput of the nodes. Using a decoupling approximation introduced by Bianchi in [18]

for IEEE 802.11 DCF nodes and a generalization of the node response formula reported

in [6], we characterize the throughput performance of the WLAN with a set of fixed point

equations involving the average collision probabilities (γ) and the average attempt rates

(β) of the nodes.

In Chapter 2, we are concerned with the saturation throughput analysis of single

cell IEEE 802.11 DCF wireless local area networks. We assume a pure collision channel

(without capture, fading or frame error) in which packets are lost only due to collision of

simultaneous transmissions. We study the vector fixed point equations (of the collision

probabilities of the nodes) arising out of the analysis of the saturation throughput of a

single cell IEEE 802.11 DCF WLAN. We consider both the balanced and unbalanced

solutions of the fixed point equations arising in the WLAN; we say that a fixed point

is balanced, when all the coordinates of the fixed point are equal. We are concerned,

in particular, with (i) whether the fixed point is balanced, and (ii) whether the fixed

point is unique. Our simulations show that when multiple unbalanced fixed points exist,

then the time behaviour of the system demonstrates severe short-term unfairness (or
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multistability). Also, in such cases, the balanced fixed point does not represent the actual

system performance accurately. Implications for the use of the fixed point formulation

for performance analysis are also discussed. Finally, we provide a condition for the fixed

point solution to be balanced, and also a condition for uniqueness. We have shown that

the default IEEE 802.11 parameters satisfy these sufficient conditions.

IEEE 802.11e defines enhanced distributed channel access (EDCA) MAC to provide

quality of service (QoS) to competing nodes. Throughput differentiation is provided by

defining different traffic classes and by allowing different channel access parameters, in-

cluding different minimum and maximum contention windows (CWmin, CWmax) and arbi-

tration interframe space (AIFS) values. In Chapter 3, we study the saturation throughput

performance of IEEE 802.11e EDCA WLANs with nonhomogeneous backoff parameters

(including AIFS and multiple queues per node). Here again, we assume a single cell

model with a pure collision channel. We obtain the fixed point equations characterizing

the system performance by modeling AIFS based differentiation and the concept of virtual

collision (when there are multiple traffic classes per node). Like in Chapter 2, we provide

a condition for the fixed point equations to have a unique solution. We also show that

the default IEEE 802.11e EDCA parameters satisfy the uniqueness conditions. The fixed

point analysis is then used to obtain insights into the throughput differentiation provided

by different initial backoffs, persistence factor, and AIFS, for finite number of nodes and

for differentiation parameter values similar to those in the IEEE 802.11e standard. An

asymptotic analysis of the fixed point is also provided for the case in which packets are

never abandoned, and the number of nodes goes to infinity. Simulation results have been

provided to validate the accuracy of the analysis.

Chapters 2 and 3 assume a pure collision channel model with no fading, frame error or

capture. In Chapter 4, we extend the saturation throughput analysis of single cell IEEE

802.11 and 802.11e WLANs to channels with frame capture at the receiver. Most analyses

of single cell WLANs assume that, when nodes attempt simultaneously in a slot, collision

occurs and all the attempts fail. However, in practice, it is possible that the receiver can

decode a signal with sufficient strength even in the presence of interfering transmissions,
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i.e., the receiver can capture a frame. Hence, we allow frame capture at the receiver and

develop a general framework to study saturation throughput of single cell WLANs. We

first discuss the network scenarios which can be modeled using our fixed point framework.

Using simulations, we then show that capture can introduce multistability in single cell

scenarios (even when the sufficient conditions of uniqueness for a pure collision channel

hold). We observe that the system of equations characterizing such WLANs can have

multiple fixed points. Then, we obtain some sufficient conditions to guarantee a unique

solution to the fixed point equations. Finally, we prove a general uniqueness result for

the infrastructure setup with uplink traffic.

In the second part of the thesis, we study resource allocation and optimization prob-

lems for a variety of wireless network scenarios. In Chapter 5, we consider a dense ad

hoc wireless network comprising n nodes confined to a given two dimensional region of

fixed, finite area A. We assume a realistic interference model (SINR based) and path loss

model (the channel gains are bounded above by 1, and are bounded below by a strictly

positive number, because of the finite area assumption). For the Gupta-Kumar random

traffic model [50], we study the scaling of the aggregate end-to-end throughput with re-

spect to the network average power constraint, P̄ , and the number of nodes, n. The

network power constraint P̄ is related to the per node power constraint,p, as P̄ = np.

For large P̄ , we show that the throughput saturates as Θ(log(P̄ )), irrespective of the

number of nodes in the network. We observe that single cell operation is optimal for large

network power constraints and direct transmission between the source-destination pair is

the throughput optimal strategy. For moderate P̄ , which can accommodate spatial reuse

to improve end-to-end throughput, we observe that the amount of spatial reuse feasible

in the network is limited by the diameter of the network. In fact, we observe that the

end-to-end path loss in the network and the amount of spatial reuse feasible in the net-

work are inversely proportional. This puts a restriction on the gains achievable using the

cooperative communication techniques studied in [60] and [9], as these rely on direct long

distance communication over the network.

Motivated by the results in Chapter 5 for large power networks, in Chapter 6, we study
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a throughput maximization problem in an average power constrained, dense, ad hoc wire-

less network operated as a single cell. Data packets are sent between source-destination

pairs by multihop relaying. We assume that nodes self-organize into a multihop network

such that all hops are of length d meters, where d is a design parameter. There is a

contention based multiaccess scheme, and it is assumed that every node always has data

to send, either originated from it or a transit packet (saturation assumption). In this sce-

nario, we seek to maximize a measure of the transport capacity of the network (measured

in bit-meters per second) over power controls (in a fading environment) and over the hop

distance d, subject to a network average power constraint. More specifically, for a fading

channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we

find that there exists an intrinsic aggregate bit rate (Θopt bits per second, depending on

the contention mechanism and the channel fading characteristics) carried by the network,

when operating at the optimal hop length and power control. The optimal transport ca-

pacity is of the form dopt(P̄t)×Θopt with dopt scaling as P̄t

1
η , where P̄t is the available time

average transmit power and η is the path loss exponent. Under certain conditions on the

fading distribution, we then provide a simple characterization of the optimal operating

point.

In Chapter 7, we study an optimal power allocation and network coding strategy

for a two link wireless network. We consider a two link slotted wireless network carrying

bidirectional traffic. Packets originate at the terminal nodes, and are routed via the central

node to their destinations. All the nodes have sufficient buffer space and the packets

are queued until transmission (i.e., there are no packet loss due to buffer overflow). We

assume that the central node can network code packets belonging to the two routes (of the

bidirectional traffic) and broadcast the coded packet simultaneously to the terminal nodes.

In this scenario, we study the optimal power allocation and network coding strategy that

stabilizes the queues at the central node. Using the framework developed in [44], we obtain

the power allocation policy and the network coding strategy that minimizes the average

power required to support a given packet arrival rate. Then, we study the asymptotic

tradeoff achievable between the average transmission power and the average queueing
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delay for the network.

In Chapter 8, we study a scheduling problem in a wireless network where vehicles are

used as store-and-forward relays. A fixed source node wants to transfer a file to a fixed

destination node, located beyond its communication range. In the absence of any infras-

tructure connecting the two nodes, we consider the possibility of communication using

vehicles passing by. Vehicles arrive at the source node at renewal instants and are known

to travel towards the destination node with speed v sampled from a given probability

distribution. The source node communicates packets of the file to the destination node

using these vehicles as relays. We assume that the vehicles communicate with the source

node and the destination node only, and hence, every packet communication involves two

hops. In this setup, we study the source node’s sequential decision problem of transfer-

ring packets of the file to vehicles as they pass by, with the objective of minimizing the

average delay in the network. We study both the finite file size case and the infinite file

size case. In the finite file size case, using a Markov decision process framework, we study

the expected total delay minimization problem. In the infinite file size case, we study the

optimal tradeoff achievable between the average queueing delay at the source node buffer

and the average transit delay in the relay vehicle.
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IEEE 802.11(e) WLANs
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Chapter 2

Fixed Point Analysis of Single Cell

IEEE 802.11 DCF WLANs :

Multistability and Fairness

2.1 Introduction

This chapter is concerned with the saturation throughput analysis of single cell IEEE

802.11 DCF wireless local area networks. We consider a single cell WLAN; single cell

meaning that all nodes are within control channel range of each other and every packet

transmission can be heard by every other node. We assume a pure collision channel

(without capture, fading or frame error) and packets are lost only due to collision of

simultaneous transmissions. There can be only one successful transmission in the channel

at any time, and the network does not support spatial reuse. IEEE 802.11 standard [1]

defines a CSMA/CA based distributed medium access control (MAC) protocol, called the

distributed coordination function (DCF). DCF permits nodes to have a single queue each

and all have identical backoff parameters (which governs the channel access). We are

interested in the expected throughput performance of the DCF WLAN when the nodes

always have packet to transmit (i.e., saturation assumption).

Much work has been reported on the performance analysis of the DCF MAC. Most

9
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of the analytical work reported has been based on a decoupling approximation proposed

initially by Bianchi in [18]. While keeping this basic decoupling approximation, in [6],

Kumar et al. presented a significant simplification and generalization of the analysis of

the IEEE 802.11 backoff mechanism. Their analysis led to a certain one dimensional fixed

point equation for the collision probability experienced by the nodes.

In this chapter, we study the vector fixed point equations (of the collision probabilities

of the nodes) arising out of the analysis of the saturation throughput of a single cell IEEE

802.11 DCF WLAN. We consider both the balanced and the unbalanced solutions of the

fixed point equations arising in the WLAN; we say that a fixed point is balanced, when

all the coordinates of the fixed point are equal. We are concerned, in particular, with (i)

whether the fixed point is balanced, and (ii) whether the fixed point is unique. Our sim-

ulations show that when multiple unbalanced fixed points exist, then the time behaviour

of the system demonstrates severe short-term unfairness (or multistability). Also, in such

cases, the balanced fixed point does not represent the actual system performance accu-

rately. Implications for the use of the fixed point formulation for performance analysis are

also discussed. Finally, we provide a condition for the fixed point solution to be balanced,

and also a condition for uniqueness.

Our approach in this chapter builds upon the one provided in [6]. The main contribu-

tions of this chapter are the following:

1. We provide examples in which, even though a unique balanced fixed point exists,

there can be multiple unbalanced fixed points, thus suggesting multistability. We

demonstrate by simulation that, in such cases, significant short-term unfairness

can be observed and the unique balanced fixed point fails to capture the system

performance.

2. Next, in the case where the backoff increases multiplicatively (as in IEEE 802.11

DCF), we establish a simple sufficient condition for the uniqueness of the solution

of the multidimensional fixed point equation.
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2.1.1 Comments on the Literature

There has been much research activity on modeling the performance of IEEE 802.11 DCF

WLANs. The general approach has been to use the decoupling approximation and the

constant collision probability assumption introduced by Bianchi in [18] and characterize

the system performance using a Markov chain. The decoupling approximation is to assume

that the aggregate attempt process of the competing nodes is independent of the backoff

state of the tagged node. By the constant collision probability assumption, we mean that

the aggregate behaviour of the competing nodes is characterized by a constant collision

probability in every slot. In this chapter, in Section 2.3, we will provide a generalization

and simplification of this approach. In the previous literature, it is assumed that the

collision rate experienced by any node is constant over time. There appears to have

been no attempt to study the phenomenon of short-term unfairness in the fixed point

framework. A related work is [40] which identifies short-term unfairness in Ethernet

(using experimentation and simulation), and suggests modifications to the protocol to

eliminate it. Also, all the existing works assume that the collision probabilities of all

the nodes (in an IEEE 802.11 DCF WLAN) are the same. Thus there appears to have

been no earlier work on studying the possibility of unbalanced solutions of the fixed point

equations. In addition, the possibility of nonuniqueness of the solution of the fixed point

equations arising in the analyses seems to have been missed in the earlier literature. In

this chapter, we study the fixed point equations of IEEE 802.11 DCF WLANs and take

into account all these possibilities.

2.1.2 Outline of the Chapter

In Section 2.2 we review the generalized backoff model that was first presented in [6]. In

Section 2.3 we develop the multidimensional fixed point equations for IEEE 802.11 DCF

WLANs and obtain the necessary and sufficient conditions satisfied by the solutions to

the fixed point equations. We provide examples in Section 2.4 to show that there can

exist multiple unbalanced fixed points and show the consequence of this. In Section 2.5,

we analyse the fixed point equations and obtain a condition for the existence of only one
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fixed point. Section 2.6 summarizes the results in this chapter.

2.2 The Generalized Backoff Model

There are n nodes, indexed by i, 1 ≤ i ≤ n. We adopt the notation in [6], whose authors

consider a generalization of the backoff behaviour of the nodes, and define the following

backoff parameters (for node i)

Ki := At the (Ki + 1)th attempt either the packet being attempted by node i succeeds

or is discarded

bi,k := The mean backoff (in slots) at the kth attempt for a packet being attempted by

node i, 0 ≤ k ≤ Ki

Definition 2.2.1 A system of n nodes is said to be homogeneous, if all the backoff

parameters of the nodes, like, Ki, bi,k, 0 ≤ k ≤ Ki are the same for all i, 1 ≤ i ≤ n. A

system of nodes is called nonhomogeneous if the backoff parameters of the nodes are

not identical.

Remark: IEEE 802.11e permits different backoff parameters to differentiate channel

access obtained by the nodes in an attempt to provide QoS. The above definitions capture

the possibility of having different CWmin and CWmax values, different exponential backoff

multiplier values and even different number of permitted attempts. In this chapter, we

consider IEEE 802.11 DCF WLANs whose nodes have identical backoff parameters and

hence, are homogeneous.

It has been shown in [6] (and later in [20]) that under the decoupling assumption,

introduced by Bianchi in [18], the attempt probability of node i (in a backoff slot, and

conditioned on being in backoff) for given collision probability γi is given by,

Gi(γi) :=
1 + γi + · · ·+ γKi

i

bi,0 + γibi,1 + · · ·+ γKi
i bi,Ki

(2.1)

Remarks 2.2.1
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1. We will assume that bi,· are such that 0 ≤ Gi(γi) ≤ 1 for all γi, 0 ≤ γi ≤ 1 and

Gi(γi) < 1 whenever γi > 0.

2. When the system is homogeneous (e.g., IEEE 802.11 DCF nodes) then we will drop

the subscript i from Gi(·), and write the function simply as G(·).

2.3 The Fixed Point Equation

It is important to note that in the present discussion all rates are conditioned on being in

the backoff periods; i.e., we have eliminated all durations other than those in which nodes

are counting down their backoff counters, in order to obtain the collision probability γi

of node i and its attempt probability βi (= Gi(γi)). Later one brings back the channel

activity periods in order to compute the throughput in terms of the attempt probabilities

(see [6]). Now consider a homogeneous system of n nodes. Let γ be the vector of colli-

sion probabilities of the nodes. With the slotted model for the backoff process and the

decoupling assumption, the natural mapping of the attempt probabilities of other nodes

to the collision probability of a node is given by

γi := Γi(β1, β2, . . . , βn) = 1−
n∏

j=1,j 6=i

(1− βj)

where βj = Gj(γj). We could now expect that the equilibrium behaviour of the system

will be characterized by the solutions of the following system of equations, for 1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

We write these n equations compactly in the form of the following multidimensional fixed

point equation.

γ = Γ(G(γ)) (2.2)
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Since Γ(G(γ)) is a composition of continuous functions it is continuous. We thus have a

continuous mapping from [0, 1]n to [0, 1]n. Hence by Brouwer’s fixed point theorem there

exists a fixed point in [0, 1]n for the equation γ = Γ(G(γ)).

Consider the ith component of the fixed point equation, i.e.,

γi = 1−
∏

1≤j≤n,j 6=i

(1−Gj(γj))

or equivalently,

(1− γi) =
∏

1≤j≤n,j 6=i

(1−Gj(γj))

Multiplying both sides by (1−Gi(γi)), we get,

(1− γi)(1−Gi(γi)) =
∏

1≤j≤n

(1−Gj(γj))

Thus a necessary and sufficient condition for a vector of collision probabilities γ =

(γ1, · · · , γn) to be a fixed point solution is that, for all 1 ≤ i ≤ n,

(1− γi)(1−Gi(γi)) =
n∏

j=1

(1−Gj(γj)) (2.3)

where the right-hand side is seen to be independent of i.

Define Fi(γ) := (1− γ)(1−Gi(γ)). From (2.3) we see that if γ is a solution of (2.2),

then for all i, j, 1 ≤ i, j ≤ n,

Fi(γi) = Fj(γj) (2.4)

Notice that this is only a necessary condition. For example, in a homogeneous system of

nodes (with Gi(·) = G(·) and hence, Fi(·) = F (·)), the vector γ such that γi = γ for all

1 ≤ i ≤ n, satisfies (2.4) for any γ, 0 ≤ γ ≤ 1, but not all such points are solutions of the

fixed point equation (2.2).
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Definition 2.3.1 We say that a fixed point γ (i.e., a solution of γ = Γ(G(γ))) is a

balanced fixed point if γi = γj for all 1 ≤ i, j ≤ n; otherwise, γ is said to be an

unbalanced fixed point.

Remarks 2.3.1

1. It is clear that if there exists an unbalanced fixed point for a homogeneous system

(like IEEE 802.11 DCF WLAN), then every permutation is also a fixed point and

hence, in such cases, we do not have a unique fixed point.

2. In the homogeneous case (like IEEE 802.11 DCF WLAN), by symmetry, the average

collision probability must be the same for every node. If the collision probabilities

correspond to a fixed point (see 3, next), then this fixed point will be of the form

(γ, γ, · · · , γ) where γ solves γ = Γ(G(γ)) = 1− (1−G(γ))n−1 (since Γi(·) = Γ(·) and

Gi(·) = G(·) for all 1 ≤ i ≤ n). Such a fixed point of γ = Γ(G(γ)) is guaranteed by

Brouwer’s Fixed Point. The uniqueness of such a balanced fixed point was studied

in [6]. We reproduce this result in Theorem 2.5.1.

3. There is, however, the possibility that even in the homogeneous case, there is an

unbalanced solution of γ = Γ(G(γ)). By simulation examples we observe in Sec-

tion 2.4 that when there exist unbalanced fixed points, the balanced fixed point of

the system does not characterize the average performance, even if there exists only

one balanced fixed point. In Section 2.5, we provide a condition for homogeneous

IEEE 802.11 type nodes (with exponential backoff) under which there is a unique

balanced fixed point and no unbalanced fixed point. In such cases, it is now well

established, that the unique balanced fixed point accurately predicts the saturation

throughput of the system.

4. For the homogeneous case the backoff process can be exactly modeled by a posi-

tive recurrent Markov chain (see [6]). Hence the attempt process and the collision

processes will be ergodic and, by symmetry, the nodes will have equal attempt

and collision probabilities. In such a situation the existence of multiple unbalanced
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fixed points will suggest short-term unfairness or multistability. We will observe

this phenomenon in Section 2.4.

5. Consider a system of homogeneous nodes having unbalanced solutions for the fixed

point equation γ = Γ(G(γ)) (i.e., there exists i, j such that γi 6= γj), then from

(2.4), we see that F (γi) = F (γj), or the function F is many-to-one. Hence for a

homogeneous system of nodes, if the function F is one-to-one then there cannot

exist unbalanced fixed points.

2.4 Nonunique Fixed Points and Multistability

In this section, we will show (using simulation examples) that the fixed point equations of

a homogeneous system can have multiple solutions. We observe that such systems exhibit

significant short-term unfairness in the throughput received and the balanced fixed point

does not represent the average system performance.

2.4.1 Example 1

Consider a homogeneous system (let us call it System-I) with n = 10 nodes. The function

G(·) of the nodes is given by,

G(γ) =
1 + γ + γ2 + γ3 + . . .

1 + γ + γ2 + γ3 + 64(γ4 + γ5 + . . .)

The system corresponds to the case where K = ∞, b0 = b1 = b2 = b3 = 1 and

b4 = b5 = b6 = . . . = 64 (bi are distributed uniformly over the integers in [1, CWi] for

appropriate CWi). From the form of function G(·), we can see that a node which is

currently at backoff stage 0 is more likely to remain at that stage as it takes 4 successive

collisions to make the attempt rate of the node < 1. Likewise, a node that is in the larger

backoff stages b4 = b5 = · · · = 64, will retry continuously with mean inter-attempt slots

of 64 until it succeeds. Observe that only one node can be at backoff stage 0 at any time.

This leads to the apparent multistability of the system.
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Figure 2.1: Example System-I: The balanced fixed point. Plots of G(γ), F (γ) = (1 −
γ)(1−G(γ)) and 1− (1−G(γ))9 vs. the collision probability γ; we also show the “y=x”
line.

Figure 2.1 plots G(γ), the corresponding F (γ) = (1 − γ)(1 − G(γ)) and shows the

balanced fixed point of the system for n = 10 nodes. The balanced fixed point of the

system shown in the figure is obtained using the fixed point equation γ = 1− (1−G(γ))9.

Observe that the function F (·) is not one-to-one (the function F (·) not being one-to-one

does not imply that there exist multiple fixed point solutions; see Remarks 2.3.1, 5).

Figure 2.2 shows the existence of unbalanced fixed points for System-I. These fixed

points are obtained as follows. Assume that we are interested in fixed points such that

γ1 6= γ2 = · · · = γn. Given γ2 = · · · = γn, the attempt probability of the nodes 2, · · · , n

is given by G(γ2). Hence, the collision probability of node 1 is given by γ1 = 1 − (1 −

G(γ2))
n−1. The attempt probability of node 1 would then be G(γ1). Using the decoupling

assumption, the collision probability of any of the other n − 1 nodes would then be,

1−(1−G(γ2))
n−2(1−G(γ1)) = γ2. Thus we obtain a fixed point equation for γ2 (and hence

for all the other γj, 3 ≤ j ≤ n). In Figure 2.2 we plot 1−(1−G(γ))8(1−G(1−(1−G(γ))9))

(plotted as the line marked with dots), the intersection of which with the “y=x” line shows

the solutions for γ2(= · · · = γn). In the same way, we obtain the fixed point equation for

γ1 by eliminating γ2, · · · , γn from the multidimensional system of equations. This function
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Figure 2.2: Example System-I: Demonstration of unbalanced fixed points. Plots of γ2 =
1 − (1 − G(γ))8(1 − G(1 − (1 − G(γ))9)) (the curve drawn with dots and lines) and the
expression for the fixed point equation for γ1 (see text) using pluses and lines.

is plotted in Figure 2.2 using pluses and lines and the intersection of this curve with the

“y=x” line shows the corresponding solutions for γ1. We see that there are three solutions

in each case. The smallest values of γ1 (approx. 0.14) pairs up with the largest value of

γ2 = · · · = γn (approx. 0.97). Notice that the balanced fixed point of the system is also a

fixed point in the plot (compare with Figure 2.1). Then there is one remaining unbalanced

fixed point whose values can be read off the plot. We note that there could exist many

other unbalanced fixed points for this system of equations, as we have considered only a

particular variety of fixed points that have the property that γ1 6= γ2 = · · · = γn.

In order to examine the consequences of multiple unbalanced fixed points we simu-

lated the backoff process with the backoff parameters of System-I. The following remarks

summarise our simulation approach.

Remarks 2.4.1 (On the Simulation Approach used)

1. We have developed an event-driven simulator written in the “C” language based on

the coupled multidimensional backoff process of the various nodes, to compare with

the analytical results. In this simulator, we do not simulate the detailed wireless
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LAN system (as is done in an ns-2 simulator), but only the backoff slots. We

will refer to this as the CMP (Coupled Markov Process) simulator. The main

aim of the CMP simulator is to understand the backoff behaviour of the nodes

and its dependence on the different backoff parameters. From the point of view

of performance analysis, it may also be noted that once the backoff behaviour is

correctly modelled the channel activity can easily be added analytically, and thus

throughput results can be obtained (see [18] and [6]). In addition, for some cases,

ns-2 simulations have also been provided in comparison with the CMP simulator

and the analytical results.

2. Our simulation is programmed as follows. The system evolves over backoff slots.

All the nodes are assumed to be in perfect slot synchronization. The actual coupled

evolution of the backoff process is modeled. The backoff values are chosen from

the uniform distribution and the backoff stage of the node and the residual backoff

counter value is the state for each node. At every slot, depending on the state of

the backoff process, there are three possibilities: the slot is idle, there is a successful

transmission, or there is a collision. This causes further evolution of the backoff

process.

3. Our simulation approach, which we primarily use to study the backoff behaviour of

the nodes, takes few seconds to complete a simulation run, in comparison with the

ns-2 simulations which takes any time between few minutes to an hour depending

on the number of nodes in the system. The coupled backoff evolution approach

we use captures all the essential features of a single cell system where there is

perfect synchronization among the nodes. The simulation provides the attempt

rates and collision probabilities directly, which can be used with the throughput

formula provided in [6] to obtain the throughput of the nodes.

4. In all our simulations, bi are distributed uniformly over the integers in [1, CWi] for

appropriate CWi.

5. In Figures 2.3, 2.6 and 2.8, for the purpose of reporting the short-term unfairness
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results, the entire duration of simulation is divided into k frames, where the size

of each frame is 10,000 slots. The short-term average of the collision probability of

each node j, 1 ≤ j ≤ n, is calculated as Cj(i)

Aj(i)
where Cj(i) and Aj(i) correspond to the

number of collisions and attempts in frame i, 1 ≤ i ≤ k, for node j. The long-term

average is similarly calculated as 1
n

∑n
j=1

∑k

i=1
Cj(i)∑k

i=1
Aj(i)

where n is the number of nodes.

Notice that the long-term average collision rate is a batch biased average of the

short-term collision rates. Hence, when looking at the graphs, it will be incorrect

to visually average the short-term collision rate plots in an attempt to obtain the

long-term average collision rate. This is because when a node is shown to have a

low collision probability, it is the one that is attempting every slot (while the other

nodes attempt with a mean gap of 64 slots), and hence it sees a low probability of

collision. In this case Aj(·) is large and Cj(·) � Aj(·). On the other hand, when a

node is shown to have a high collision probability it is attempting at an average rate

of 1
64

and almost all its attempts collide with the node that is then attempting in

every slot. In this case Aj(·) is small and Cj(·) ≈ 1. Thus, in obtaining the overall

average, it is essential to account for the large variation in Aj(·) between the two

cases.

In Figure 2.3 we plot a (simulation) snap shot of the short-term time average collision

rate of two of the 10 nodes of System-I and the average collision probability of the nodes

(The average is calculated over all frames and all nodes. Since the nodes are identical, the

average collision probability is the same for all the nodes). Observe that the short-term

average has a huge variance around the long term average. It is evident that over 1000’s

of slots one node or the other monopolises the channel (and the remaining nodes see a

collision probability of 1 during those slots). This could be described as multistability. A

look into the fairness index (see Figure 2.9) plotted as a function of the frame size used

to calculate throughput suggests that System-I exhibits significant unfairness in service

even over reasonably large time intervals.

Implication for the use of the balanced fixed point: Notice also that the average col-

lision rate shown in Figure 2.3 is about 0.25, whereas the balanced fixed point shown in
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Figure 2.3: Example System-I: Snap-shot of short-term average collision rate of 2 of the
10 nodes. Also plotted is the average collision probability of the nodes (averaged over all
frames and nodes). The 95% confidence interval for the average collision probability lies
within 0.7% of the mean value.

Figure 2.1 shows a collision probability of about 0.62. Hence we see that in this case,

where there are multiple fixed points, the balanced fixed point does not capture the actual

system performance.

2.4.2 Example 2

Let us now consider yet another homogeneous example (let us call it System-II) with

n = 20 nodes. The function G(·) of the nodes is given by,

G(γ) =
1 + γ + γ2 + · · ·+ γ7

1 + 3γ + 9γ2 + 27γ3 + · · ·+ 2187γ7

The system corresponds to the case where K = 7, b0 = 1, p = 3 and bk = pkb0 for

all 0 ≤ k ≤ K (bi are uniformly distributed in [1, CWi] for appropriate CWi). We

notice that in this example the way the backoff expands is similar to the way it expands

in the IEEE 802.11 standard, except that the initial backoff is very small (1 slot) and

the multiplier is 3, rather than 2. Figure 2.4 plots G(γ), the corresponding F (γ) =
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Figure 2.4: Example System-II: The balanced fixed point. Plots of G(γ), F (γ) = (1 −
γ)(1 − G(γ)) and 1 − (1 − G(γ))19 vs. the collision probability γ; the line “y=x” is also
shown. Notice that the function F is not one-to-one.

(1 − γ)(1 − G(γ)) and the balanced fixed point of the system for n = 20 nodes. The

balanced fixed point of the system shown in the figure is obtained using the fixed point

equation γ = 1− (1−G(γ))19.

As in the case of System-I, Figure 2.5 shows the existence of multiple unbalanced

fixed points for System-II. The fixed points we have shown correspond to the case where

γ1 6= γ2 = · · · = γn and are obtained just as discussed for System-I.

Figure 2.6 plots a snap shot of the short-term average collision probability (from

simulation) of two of the 20 nodes and the average collision probability of the nodes

(same for all the nodes). Observe that the short-term averages vary a lot as compared

to the long term average, suggesting multistability. Again, as in the case of System-I,

comparing the average collision probability with the balanced fixed point of the system in

Figure 2.4, we see that the fixed point does not capture the actual system performance.

Discussion of Examples 1 and 2: From the simulation examples, we can make the

following inferences.

1. When there are multiple unbalanced fixed points in a homogeneous system then the
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Figure 2.5: Example System-II: Demonstration of unbalanced fixed points. Plots of γ2 =
1− (1−G(γ))18(1−G(1− (1−G(γ))19)) (the curve drawn with dots and lines) and the
function for the fixed point equation for γ1 (see text) using pluses and lines.
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Figure 2.6: Example System-II: Snap-shot of short-term average collision probability of 2
of the 20 nodes. The average collision probability is also plotted in the figure (averaged
over all slots and nodes). The 95% confidence interval for the average collision rate lies
within 0.7% of the mean value.
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system can display multistability, which manifests itself as significant short-term

unfairness in channel access.

2. When there are multiple unbalanced fixed points in a homogeneous system then

the collision probability obtained from the balanced fixed point may be a poor

approximation to the long term average collision probability.

It appears that the existence of multiple-fixed points is a consequence of the form of

the G(·) function in the above examples, where G(·) is similar to a switching curve; see,

for example, Figure 2.1 where there is a very high attempt probability at low collision

probabilities and a very low attempt probability at high collision probabilities.

2.4.3 Example 3

Consider a homogeneous system, with n = 10 nodes, in which the backoff increases

multiplicatively as in IEEE 802.11 DCF (let us call it System-III). The function G(·) is

given by,

G(γ) =
1 + γ + γ2 + . . .+ γ7

16 + 32γ + 64γ2 + . . .+ 2048γ7

The system corresponds to the case where K = 7, p = 2 and b0 = 16 and bk = pkb0 for

all 0 ≤ k ≤ K (bi are uniformly distributed in [1, CWi] for appropriate CWi). These

parameters are similar to those used in the IEEE 802.11 standard. Figure 2.7 plots G(·),

the corresponding F (γ) = (1 − γ)(1 − G(γ)) and the unique balanced fixed point of the

system. (Notice that F is one-to-one and uniqueness of the fixed point will be proved in

Section 2.5.) The balanced fixed point of the system is obtained using the fixed point

equation γ = 1 − (1 − G(γ))9. The balanced fixed point yields a collision probability of

approximately 0.29.

Figure 2.8 plots a snap shot of the short-term average collision probability (from

simulation) of two of the 10 nodes and the average collision probability of the nodes

of the Example System-III. Notice that the short-term average collision rate is close

to the average collision rate (the vertical scale in this figure is much finer than in the
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Figure 2.7: Example System-III: Plots ofG(γ), F (γ) = (1−γ)(1−G(γ)) and 1−(1−G(γ))9

vs. the collision probability γ; the line “y=x” is also shown.

corresponding figures for System-I and System-II). Also, the average collision rate matches

well with the balanced fixed point solution obtained in Figure 2.7.

Remark: Thus we see that in a situation in which there is a unique fixed point not only is

there a lack of multistability, but also the fixed point solution yields a good approximation

to the long run average behaviour.

2.4.4 Short-term Fairness in Examples 1, 2 and 3

Figure 2.9 plots the throughput fairness index 1
n

(
∑n

i=1
τi)

2∑n

i=1
τ2
i

(where τi is the average through-

put of node i over the measurement frame, see [53]) against the frame size used to measure

throughput. The fairness index is obtained for each frame size and is averaged over the

duration of the simulation. Also plotted in the figure is the 95% confidence interval. We

note that values of this index will lie in the interval [0, 1], and smaller values of the index

correspond to greater unfairness between the nodes. The performance of all the three

example systems are compared. Notice that Example System-III (similar to IEEE 802.11

DCF) has the best fairness properties. The system achieves fairness of 0.9 over 1000’s

of slots. However, for Example System-I and II, similar performance is achieved only
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over 1,000,000 and 100,000 slots. The unfairness of Example Systems-I and II can be

attributed to their apparent multistability.

In Section 2.5 we will establish conditions for uniqueness of the solution of the multi-

dimensional fixed point equation.

2.5 Uniqueness of the Fixed Point

The following two results are adopted from [6].

Lemma 2.5.1 G(γ) is nonincreasing in γ if bk, k ≥ 0, is a nondecreasing sequence. In

that case, unless bk = b0 for all k, G(γ) is strictly decreasing in γ.

Theorem 2.5.1 Define Γ := 1 − (1 − G(γ))n−1. For a homogeneous system of nodes,

Γ(G(γ)) : [0, 1] → [0, 1], has a unique fixed point if bk, k ≥ 0, is a nondecreasing sequence.

Remark: The fixed point (γ, γ, · · · , γ) is the unique balanced fixed point for γ = Γ(G(γ)).

From (2.4), we see that a necessary condition for the existence of unbalanced fixed points

in a homogeneous system of nodes is that the function F (γ) = (1 − γ)(1 − G(γ)) needs

to be many-to-one. In other words, if the function (1− γ)(1−G(γ)) is one-to-one and if

γ = (γ1, γ2, . . . , γn) is a solution of the system γ = Γ(G(γ)), then γi = γj for all i, j.

Consider the exponentially increasing backoff case for which G(·) is given by,

G(γ) =
1 + γ + γ2 + . . .+ γK

b0(1 + pγ + p2γ2 + . . .+ pKγK)
(2.5)

Clearly, G(γ) is a continuously differentiable function and so is F (γ) = (1−γ)(1−G(γ)).

The following simple lemma is a consequence of the mean value theorem.

Lemma 2.5.2 F (γ) is one-to-one in 0 ≤ γ ≤ 1 if F
′
(γ) 6= 0 for all 0 ≤ γ ≤ 1.

Remarks 2.5.1
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When F (·) is one-to-one in 0 ≤ γ ≤ 1 and G(·) is such that 0 ≤ G(γ) ≤ 1 for all

0 ≤ γ ≤ 1, the following hold

(i) F (γ) = 0 iff γ = 1,

(ii) F (0) > 0, and

(iii) F (γ) is a decreasing function of γ.

Now the derivative of F is

F
′
(γ) = −1 +G(γ)−G

′
(γ)(1− γ)

Lemma 2.5.3 For G(·) as in (2.5), if K ≥ 1 and p ≥ 2, then G
′
(γ) < 0 and |G′

(γ)| ≤ 2p
b0

for all 0 ≤ γ ≤ 1.

Proof: See Appendix 2.7.1.

Clearly, G(γ) ≤ 1
b0

and 1 ≥ (1 − γ) ≥ 0 for all 0 ≤ γ ≤ 1. Substituting into the

expression for F
′
(γ), we get,

F
′
(γ) ≤ −1 +

1 + 2p

b0

Thus, if in addition to the other condition in Lemma 2.5.3, if b0 > 1 + 2p, then F
′
(γ) < 0

and the following result holds by virtue of the remark following Theorem 2.5.1.

Theorem 2.5.2 For a function G(·) defined as in (2.5) if K ≥ 1, p ≥ 2 and b0 > 2p+ 1,

then the system of equations γ = Γ(G(γ)) has a unique fixed point which is balanced.

Remark: It can be shown that if Lemma 2.5.3 holds for G(·) as in (2.5) it also holds for

any case in which bk = pkb0 for 0 ≤ k ≤ m ≤ K and bk = pmb0 for m < k ≤ K. The latter

situation closely matches the IEEE 802.11 standard (with b0 = 16, p = 2, K = 7,m = 5).

Hence a homogeneous IEEE 802.11 WLAN has a unique fixed point which is also balanced.

In general, if the function G(·) is arbitrary (as in (2.1)) but monotone decreasing, there

exists a unique balanced fixed point for the system as long as the function (1−γ)(1−G(γ))

is one-to-one.
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2.6 Summary

In this chapter we have studied a multidimensional fixed point equation arising from

a model of the backoff process of the DCF access mechanism in IEEE 802.11 wireless

LANs. Our first concern was the consequences of the nonuniqueness of the fixed point

solution and conditions for uniqueness. We demonstrated via examples of homogeneous

systems that even when the balanced fixed point is unique, the existence of unbalanced

fixed points coexists with the observation of severe short-term unfairness in simulations.

Further, in such examples the balanced fixed point solution does not capture the long run

average behaviour of the system. With these observations in mind, we concluded that

it is desirable to have systems in which there is a unique fixed point. We have provided

simple sufficient conditions on the node backoff parameters that guarantee that a unique

fixed point exists. We have shown that the default IEEE 802.11 parameters satisfy these

sufficient conditions.

The fixed point approach is simply a heuristic that is found to work well in some cases.

Our work suggests where it might not work and where it might work. In a recent work

[11], the authors have proved that for random backoff algorithms, when the number of

sources grow large, the system is indeed decoupled, providing a theoretical justification

of decoupling arguments used in the analysis.

2.7 Appendix

2.7.1 Proofs of Theorems and Lemmas

Proof of Lemma 2.5.3

Define G(γ) := u(γ)
v(γ)

. We have

u(γ)

v(γ)
=

1 + γ + γ2 · · ·+ γK

b0(1 + γp+ · · ·+ γkpk + · · ·+ γKpK)
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(
u

v

)′

=
u
′
v − v

′
u

v2

Since, by Lemma 2.5.1, G
′
(·) ≤ 0,

(
u
v

)′
≤ 0 for all 0 ≤ γ ≤ 1. Also, with K ≥ 1, u, u

′
, v

and v
′
are nonnegative for all 0 ≤ γ ≤ 1. Hence, for all 0 ≤ γ ≤ 1

∣∣∣∣∣
(
u

v

)′∣∣∣∣∣ ≤ v
′
u

v2

Differentiating v, we get,

v
′

= b0(p+ 2p2γ + 3p3γ2 + · · ·+KpKγK−1)

Multiplying with u, we have,

v
′
u = b0(p+ 2p2γ + 3p3γ2 + · · ·+KpKγK−1)(1 + γ + γ2 + · · ·+ γK)

= b0p(1 + 2pγ + 3p2γ2 + · · ·+KpK−1γK−1)(1 + γ + γ2 + · · ·+ γK)

= b0p(1 + γ(1 + 2p) + γ2(1 + 2p+ 3p2) + γ3(1 + 2p+ 3p2 + 4p3) + · · ·

+γK−1(1 + 2p+ · · ·+KpK−1) + γK(1 + 2p+ · · ·+KpK−1)

+γK+1(2p+ · · ·+KpK−1) + · · ·+ γ2K−2((K − 1)pK−2 +KpK−1)

+γ2K−1(KpK−1))

We see that,

v
′
u ≤ b0p(1 + γ(2 + 2p) + γ2(3 + 3p+ 3p2) + γ3(4 + 4p+ 4p2 + 4p3) + · · ·

+γK−1(K +Kp+ · · ·+KpK−1) + γK(K +Kp+ · · ·+KpK−1)

+γK+1(Kp+ · · ·+KpK−1) + · · ·+ γ2K−1(KpK−2 +KpK−1)

+γ2K−1(KpK−1))

For p ≥ 2,

1 + p+ p2 + · · ·+ pn < pn+1
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Hence,

v
′
u ≤ b0p((1 + 1) + γ(2p+ 2p) + γ2(3p2 + 3p2) + γ3(4p3 + 4p3) + · · ·

+γK−1(KpK−1 +KpK−1) + γK(KpK−1 +KpK−1)

+γK+1(KpK−1 +KpK−1) + · · ·+ γ2K−1(KpK−1 +KpK−1)

+γ2K−1(KpK−1 +KpK−1))

≤ b02p(1 + γ(2p) + γ2(3p2) + γ3(4p3) + · · ·+ γK−1(KpK−1) + γK(KpK−1)

+γK+1(KpK−1) + · · ·+ γ2K−1(KpK−1) + γ2K−1(KpK−1))

But we know that,

v2 = b20(1 + pγ + p2γ2 + · · ·+ pKγK)2

= b20(1 + γ(2p) + γ2(3p2) + γ3(4p3) + · · ·+ γK−1(KpK−1) + γK((K + 1)pK)

+γK+1(KpK+1) + γK+2((K − 1)pK+2) + · · ·+ γ2K−1(2p2K−1) + γ2K(p2K))

We see that, for x ≥ 2, y ≥ 2, (x− 1)(y − 1) ≥ 1 ⇒ xy ≥ x+ y. Hence, for K ≥ 2, p ≥ 2,

K ≤ (K − 1)p. Repeating the above argument for (K − 1) and p and so on, we get

K ≤ (K − n)pn for 0 ≤ n ≤ K − 1.

Now, comparing v
′
u and v2 term by term in powers of γ and using the fact that

K ≤ (K − n)pn for K ≥ 2, p ≥ 2 and 0 ≤ n ≤ K − 1, we see that,

v
′
u

v2
≤ 2p

b0

For the case K = 1 and p ≥ 2, we have v
′

= b0p and v
′
u = b0p(1 + γ). Also, v2 =

b20(1 + 2pγ + γ2). Hence,

v
′
u

v2
=

b0p(1 + γ)

b20(1 + 2pγ + γ2)

=
p

b0

(1 + γ)

(1 + 2pγ + γ2)



Chapter 2. Fixed Point Analysis of Single Cell IEEE 802.11 DCF WLANs : Multistability and Fairness32

≤ p

b0
≤ 2p

b0



Chapter 3

Fixed Point Analysis of Single Cell

IEEE 802.11e EDCA WLANs

3.1 Introduction

A new component of the IEEE 802.11e [2] medium access control is enhanced distributed

channel access (EDCA), which provides differentiated channel access to packets by al-

lowing different backoff parameters. Several traffic classes (or access categories) are sup-

ported, the classes being distinguished by channel priorities and backoff parameters. Thus,

whereas in the legacy DCF all nodes have a single queue, and a single backoff “state ma-

chine”, all with the same backoff parameters (we say that the nodes are homogeneous),

in EDCA the nodes can have multiple queues with separate backoff state machines with

different parameters, and hence are permitted to be nonhomogeneous.

This chapter is concerned with the saturation throughput analysis of single cell IEEE

802.11e EDCA wireless LANs. We consider a single cell network of IEEE 802.11e nodes

with a pure collision channel model (no capture, fading or frame error). For ease of

understanding, much of our presentation is for the case in which each node has only one

EDCA queue (of some access category). The analysis, however, applies to the general

case of multiple EDCA queues (of different access categories) per node and we show this

in Section 3.4.

33
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In Chapter 2, using the generalization proposed in [6], we obtained the multidimen-

sional fixed point equations for homogeneous IEEE 802.11 DCF nodes. In this chapter we

consider multidimensional fixed point equations for a nonhomogeneous system of nodes.

The nonhomogeneity arises due to different initial backoffs, or different backoff multi-

pliers, or different amounts of time that nodes wait after a transmission before restart-

ing their backoff counters (i.e., the AIFS (Arbitration InterFrame Space) mechanism of

IEEE 802.11e), or different number of access categories per node. We consider both the

balanced and unbalanced solutions of the fixed point equations and provide a condition

for the fixed point solution to be balanced within an access category, and also a condition

for uniqueness. Finally the fixed point equations are used to obtain insights into the

throughput differentiation provided by different initial backoffs, persistence factors, AIFS

and multiple traffic classes, for finite number of nodes and for differentiation parameter

values similar to those in the IEEE 802.11e standard. An asymptotic analysis of the fixed

point is also provided for the case in which packets are never abandoned, and the number

of nodes goes to ∞. Simulation results (from the CMP simulator and ns-2) validate the

accuracy of our analysis.

3.1.1 A Survey of the Literature

Without modeling the AIFS mechanism, the extension is straightforward. Only the initial

backoff, and the backoff multiplier (persistence factor) are modeled. In [77], [76] and [10],

such a scheme is studied by extending Bianchi’s Markov model per traffic class.

The AIFS technique is a further enhancement in IEEE 802.11e that provides a sort

of priority to nodes that have smaller values of AIFS. After any successful transmission,

whereas high priority nodes (with AIFS = DIFS) wait only for DIFS (DCF Interframe

Space) to resume counting down their backoff counters, low priority nodes (with AIFS >

DIFS) defer the initiation of countdown for an additional AIFS−DIFS slots. Thus a high

priority node decrements its backoff counter earlier than a low priority node and also has

fewer collisions.

Among the approaches that have been proposed for modeling the AIFS mechanism
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(for example, [75], [78], [79], [23], [80], [34], [24] and [28]) the ones in [34], [24] and [28]

come much closer to capturing the service differentiation provided by the AIFS feature.

In [34] the authors propose a Markov model to capture both the different backoff window

expansion approach and AIFS. AIFS is modeled by expanding the state-space of the

Markov chain to include the number of slots elapsed since the previous transmission

attempt on the channel. In [28] the authors observe that the system exists in states in

which only nodes of certain access categories can attempt. The approach is to model the

evolution of these states as a Markov chain. The transition probabilities of this Markov

chain are obtained from the assumed, decoupled attempt probabilities. This approach

yields a fixed point formulation. This is the approach we will discuss in Section 3.3. [24]

uses a Markov chain on the number of slots elapsed from the previous transmission to

model AIFS based service differentiation. [80] extends the Bianchi’s analysis to multiple

traffic classes per node case using the Markov chain approach.

We note that the analyses in [34] and [28] are based on Bianchi’s approach to modeling

the residual backoff by a Markov chain. In this chapter, we have extended the simplifica-

tion reported in [6] (which was for a homogeneous system of nodes) to nonhomogeneous

nodes with different backoff parameters and AIFS based priority schemes. Also, we model

the case of multiple queues (of different access categories) per node (see [80]). Thus, in

our work, we have provided a simplified and integrated model to capture all the essential

backoff based service differentiation mechanisms of the IEEE 802.11e EDCA.

3.1.2 Outline of the Chapter

In Section 3.2 we will develop the fixed point equations for the nonhomogeneous case

with different backoff parameters (and without AIFS) and prove uniqueness results. In

Section 3.3, we extend the analysis to include AIFS based differentiation. In Section 3.4

we analyse the case of multiple EDCA queues per node. An analytical study of the service

differentiation provided by the various differentiation mechanisms is done in Section 3.5.

Section 3.6 summarizes the results in the chapter.
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3.2 The Nonhomogeneous Case

In this section, we will extend our results (of Chapter 2 for homogeneous nodes) to systems

with nonhomogeneous nodes. AIFS will be introduced in Section 3.3. Nonhomogeneity

is introduced by allowing different values of initial backoff (b0), backoff multiplier (p) and

different number of retrials (K) per node.

Consider a nonhomogeneous system of n nodes, with Gi(·), the ith node’s response

formula defined as in Chapter 2, Section 2.2. In Chapter 2, Section 2.5, we showed that,

for a homogeneous system of nodes to have a unique solution to the fixed point equations,

a sufficient condition is that the function G(·) is monotone decreasing and the function

F (·) is one-to-one. Here as well, we will assume that Gi(·) is monotone decreasing and

Fi(·) is one-to-one for all 1 ≤ i ≤ n.

Let γ be the vector of collision probabilities of the nodes. With the slotted model for

the backoff process and the decoupling assumption, the natural mapping of the attempt

probabilities of other nodes to the collision probability of a node is given by

γi = Γi(β1, β2, . . . , βn) = 1−
n∏

j=1,j 6=i

(1− βj)

where βj = Gj(γj). The equilibrium behaviour of the system will be characterized by the

solutions of the following system of equations, for 1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

A necessary and sufficient condition for a vector of collision probabilities γ = (γ1, · · · , γn)

to be a fixed point solution is that, for all 1 ≤ i ≤ n,

(1− γi)(1−Gi(γi)) =
n∏

j=1

(1−Gj(γj)) (3.1)

Define Fi(γ) := (1 − γ)(1 − Gi(γ)). From (3.1), we see that a necessary condition for a
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vector of collision probabilities γ to be a fixed point solution is that, for all i, j, 1 ≤ i, j ≤ n,

Fi(γi) = Fj(γj) (3.2)

Let there be two fixed point solutions γ = (γ1, γ2, . . . , γn) and λ = (λ1, λ2, . . . , λn) for

the above system, and there exists k, 1 ≤ k ≤ n, such that γk 6= λk. From the necessary

condition (equations (3.2)) we require that, for all i, and for some J1 > 0 and J2 > 0

(clearly, J1, J2 6= 0),

(1− γi)(1−Gi(γi)) = J1

(1− λi)(1−Gi(λi)) = J2

Since (1 − γ)(1 − Gi(γ)) is one-to-one for all i, applying this to γk and λk, we require

J1 6= J2. Without loss of generality, assume J1 < J2. Hence, γi > λi for all i (see

Chapter 2, Remarks 2.5.1). Using (3.1) we have,

λi = 1−
∏
j 6=i

(1−Gj(λj))

≥ 1−
∏
j 6=i

(1−Gj(γj))

= γi

a contradiction. Hence, it must be that J1 = J2 or there exists a unique fixed point.

Notice that the arguments above immediately imply the following result.

Theorem 3.2.1 If Gi(γ) is a decreasing function of γ for all i and (1 − γ)(1 − Gi(γ))

is a strictly monotone function on [0, 1], then the system of equations βi = Gi(γi) and

γi = Γi(β1, . . ., βi, . . . , βn) has a unique fixed point.

Where nodes use exponentially increasing backoff, the next result then follows.

Theorem 3.2.2 For a system of nodes 1 ≤ i ≤ n, with Gi(·) as in Chapter 2, equation

(2.5), that satisfy Ki ≥ 1, pi ≥ 2 and b0i
> 2pi + 1, there a exists a unique fixed point for

the system of equations, γi = 1−∏
j 6=i(1−Gj(γj)) for 1 ≤ i ≤ n.
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Figure 3.1: Plots of collision probability for a homogeneous system of nodes. Three
different cases are considered, Priority 0 (AC VO), Priority 1 (AC VI) and Priority 2
(AC BE). The lines correspond to the fixed point analysis, the “+” correspond to the
ns-simulations and “O” correspond to the CMP simulator. The 95% confidence interval
lies within 1% of the simulation estimate.

Proof: In Chapter 2, Theorem 2.5.2, we showed that when Gi(·) uses a exponentially

increasing backoff, that satisfies Ki ≥ 1, pi ≥ 2 and b0i
> 2pi + 1, then Gi(·) is monotone

decreasing and Fi(·) is one-to-one. The uniqueness result now follows from Theorem 3.2.1.

Remark: The above result has relevance in the context of the IEEE 802.11e standard

where the proposal is to use differences in backoff parameters to differentiate the through-

puts obtained by the various nodes. While Theorem 3.2.2 only states a sufficient condition,

it does point to a caution in choosing the backoff parameters of the nodes.

Figure 3.1 compares the collision probability obtained using the fixed point analysis

for a homogeneous system, with ns-2 simulation and the CMP simulator. The plot shows

3 different cases, Priority 0, 1 and 2, corresponding to the IEEE 802.11e EDCA default

settings for AC VO, AC VI and AC BE. Observe that the fixed point analysis accurately

predicts the system performance (from the CMP simulator and the ns-2 simulations).



Chapter 3. Fixed Point Analysis of Single Cell IEEE 802.11e EDCA WLANs 39

3.3 Analysis of the AIFS Mechanism

Our approach for obtaining the fixed point equations when the AIFS mechanism is in-

cluded is the same as the one developed in [28]. However, we develop the analysis in the

more general framework introduced in [6] and extended here in Section 3.2. We will show

that under the condition that F (·) is one-to-one there exists a unique fixed point for this

problem as well. The analysis is presented here for two different AIFS class case, but

can be extended to any number of classes. Also in this section, we consider only the case

in which there is one queue (of an AIFS class) in each node. Extension to the case of

multiple queues per node is done in Section 3.4.

Let us begin by recalling the basic idea of AIFS based service differentiation (see [63]).

In legacy DCF, a node decrements its backoff counter, and then attempts to transmit only

after it senses an idle medium for more than a DCF interframe space (DIFS). However,

in EDCA (Enhanced Distributed Channel Access), based on the access category of a

node (and its AIFS value), a node attempts to transmit only after it senses the medium

idle for more than its AIFS. Higher priority nodes have smaller values of AIFS , and

hence obtain a lower average collision probability, since these nodes can decrement their

backoff counters, and even transmit, in slots in which lower priority nodes (waiting to

complete their AIFSs) cannot. Thus, nodes of higher priority (lower AIFS) not only tend

to transmit more often but also have fewer collisions compared to nodes of lower priority

(larger AIFS). The model we use to analyze the AIFS mechanism is quite general and

accommodates the actual nuances of AIFS implementations (see [19] for how AIFS and

DIFS differs) when the AIFS parameter values and the sampled backoff values are suitably

adjusted.

3.3.1 The Fixed Point Equations

Let us consider two classes of nodes of two different priorities. The priority for a class is

supported by using AIFS as well as b0, p and K. All the nodes of a particular priority have

the same values for all these parameters. There are n(1) nodes of Class 1 and n(0) nodes of

Class 0. Class 1 corresponds to a higher priority of service. The AIFS for Class 0 exceeds
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the AIFS of Class 1 by l slots. Thus, after every transmission activity in the channel,

while Class 0 nodes wait to complete their AIFS, Class 1 nodes can attempt to transmit

in those l slots. Also, if there is any transmission activity (by Class 1 nodes) during those

l slots, then again the Class 0 nodes wait for another additional l slots compared to the

Class 1 nodes, and so on.

As in [18] and [6], we need to model only the evolution of the backoff process of a

node (i.e., the backoff slots after removing any channel activity such as transmissions or

collisions) to obtain the collision probabilities. For convenience, let us call the slots in

which only Class 1 nodes can attempt as excess AIFS slots, which will correspond to the

subscript EA in the notation. In the remaining slots (corresponding to the subscript R in

the notation) nodes of either class can attempt. Let us view such groups of slots, where

different sets of nodes contend for the channel, as different contention periods. Let us

define

β
(1)
i := the attempt probability of a Class 1 node for all i, 1 ≤ i ≤ n(1), in the slots in

which a Class 1 node can attempt (i.e., all the slots)

β
(0)
i := the attempt probability of a Class 0 node for all i, 1 ≤ i ≤ n(0), in the contention

periods during which Class 0 nodes can attempt (i.e., slots that are not Excess AIFS

slots)

Note that in making these definitions we are modeling the attempt probabilities for Class 1

as being constant over all slots, i.e., the Excess AIFS slots and the remaining slots. This

simplification has been shown to yield results that match well with simulations (see [28]).

We also provide results using our simulation approach in Section 3.3.3.

Now the collision probabilities experienced by nodes will depend on the contention

period (excess AIFS or remaining slots) that the system is in. The approach is to model

the evolution over contention periods as a Markov Chain over the states (0, 1, 2, · · · , l),

where the state s, 0 ≤ s ≤ (l − 1), denotes that an amount of time equal to s slots has

elapsed since the end of the AIFS for Class 1. These states correspond to the excess AIFS

period in which only Class 1 nodes can attempt. In the remaining slots, when the state

is s = l, all nodes can attempt.
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Figure 3.2: AIFS differentiation mechanism: Markov model for remaining number of AIFS
slots.

In order to obtain the transition probabilities for this Markov chain we need the

probability that a slot is idle. Using the decoupling assumption, the idle probability in

any slot during the excess AIFS period is obtained as,

qEA =
n(1)∏
i=1

(1− β
(1)
i ) (3.3)

Similarly, the idle probability in any of the remaining slots is obtained as,

qR =
n(1)∏
i=1

(1− β
(1)
i )

n(0)∏
j=1

(1− β
(0)
j ) (3.4)

The transition structure of the Markov chain is shown in Figure 3.2. As compared

to [28], we have used a simplification that the maximum contention window is much

larger than l. If this were not the case then some nodes would certainly attempt before

reaching l. In practice, l is small (e.g., 1 slot or 5 slots; see [2]) compared to the maximum

contention window.

Let π(EA) be the stationary probability of the system being in the excess AIFS period;

i.e., this is the probability that the above Markov chain is in states 0, or 1, or · · ·, or (l−1).

In addition, let π(R) be the steady state probability of the system being in the remaining

slots, i.e., state l of the Markov chain. Solving the balance equations for the steady state

probabilities, we obtain,

π(EA) =
1 + qEA + q2

EA + · · ·+ ql−1
EA

1 + qEA + q2
EA + · · ·+ ql−1

EA +
ql
EA

1−qR
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π(R) =

ql
EA

1−qR

1 + qEA + q2
EA + · · ·+ ql−1

EA +
ql
EA

1−qR

(3.5)

The average collision probability of a node is then obtained by averaging the collision

probability experienced by a node over the different contention periods. The average

collision probability for Class 1 nodes is given by, for all i, 1 ≤ i ≤ n(1),

γ
(1)
i = π(EA)

1−
n(1)∏

j=1,j 6=i

(1− β
(1)
j )


+ π(R)

1−

 n(1)∏
j=1,j 6=i

(1− β
(1)
j )

n(0)∏
j=1

(1− β
(0)
j )

 (3.6)

Similarly, the average collision probability of a Class 0 node is given by, for all i, 1 ≤ i ≤

n(0),

γ
(0)
i = 1−

n(1)∏
j=1

(1− β
(1)
j )

n(0)∏
j=1,j 6=i

(1− β
(0)
j )

 (3.7)

Our analysis in the remaining section now generalizes the analysis of [28] and also

establishes uniqueness of the fixed point and the property that the fixed point is balanced

over nodes in the same class. Define G(1)(·) and G(0)(·) as in Chapter 2, equation (2.1)

(except that the superscripts here denote the class dependent backoff parameters, with

nodes within a class having the same parameters). Then the average collision probability

obtained from the previous equations can be used to obtain the attempt rates by using

the relations

β
(1)
i = G(1)(γ

(1)
i ), and β

(0)
j = G(0)(γ

(0)
j ) (3.8)

for all 1 ≤ i ≤ n(1), 1 ≤ j ≤ n(0). We obtain the fixed point equations for the collision

probabilities by substituting the attempt probabilities from (3.8) into (3.6) and (3.7) (and

also into equations (3.3) and (3.4)). We have a continuous mapping from [0, 1]n
(1)+n(0)

to

[0, 1]n
(1)+n(0)

. It follows from Brouwer’s fixed point theorem that there exists a fixed point.
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3.3.2 Uniqueness of the Fixed Point

Lemma 3.3.1 If F (·) is one-to-one, then collision probabilities of all the nodes of the

same class are identical; i.e., the fixed points are balanced within each class.

Proof: See Appendix 3.7.1.

Theorem 3.3.1 The set of equations (3.6), (3.7) and (3.8) together with (3.5), (3.3) and

(3.4), representing the fixed point equations for the AIFS model, has a unique solution if

the corresponding functions G(1) and G(0) are monotone decreasing and F (1) and F (0) are

one-to-one.

Proof: See Appendix 3.7.1.

Remark: It follows from the earlier results in this chapter (see, example, Theorem 3.2.2)

that if G(0)(·) and G(1)(·) have exponential backoffs, and if K(i) ≥ 1, p(i) ≥ 2, and b
(i)
0 >

2p(i) + 1, for i = 0, 1, then the fixed point equations will have a unique solution.

3.3.3 Numerical Study and Discussion

Although the numerical accuracy of the fixed point analysis has been reported before (see

[18], [28]), for completeness, in Figures 3.3 and 3.4, we compare the collision probability

obtained using the fixed point analysis with ns-2 simulation and the CMP simulator.

Figure 3.3 plots the collision probabilities of AC VO (access category for voice; the high

priority) nodes and AC BE (access category for best-effort traffic, e.g., TCP; the low

priority) nodes, with the number of AC BE nodes fixed to 4. Figure 3.4 plots the collision

probabilities of AC VI (access category for video; the high priority) nodes and AC BE

(the low priority) nodes with the number of AC BE nodes fixed to 12. AC VO, AC VI

and AC BE correspond to the IEEE 802.11e EDCA access categories. As observed in

the plots, the AIFS model works very well whenever l � CWmin of the traffic classes.

Additional plots comparing the analysis with the CMP simulator have been provided in

Figures 3.5, 3.6 and 3.7.
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Figure 3.3: Plots of collision probability of HP - Priority 0 (AC VO) nodes and LP -
Priority 2 (AC BE) nodes with the number of Priority 2 nodes fixed to 4. The lines
correspond to the fixed point analysis, the “+” correspond to the ns-simulations and “o”
correspond to the CMP simulator. The 95% confidence interval lies within 1% of the
simulation estimate.
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Figure 3.4: Plots of collision probability of HP - Priority 1 (AC VI) nodes and LP -
Priority 2 (AC BE) nodes with the number of Priority 2 nodes fixed to 12. The lines
correspond to the fixed point analysis, the “+” correspond to the ns-simulations and “o”
correspond to the CMP simulator. The 95% confidence interval lies within 1% of the
simulation estimate.
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Figure 3.5: Plots of collision probability of HP - Priority 1 (AC VI) nodes and LP -
Priority 2 (AC BE) nodes with the number of Priority 2 nodes fixed to 8. The lines
correspond to the fixed point analysis and the symbols correspond to the CMP simulator.
The 95% confidence interval lies within 1% of the simulation estimate.
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Figure 3.6: Plots of collision probability of HP - Priority 1 (AC VI) nodes and LP -
Priority 3 (AC BK) nodes with the number of Priority 3 nodes fixed to 4. The lines
correspond to the fixed point analysis and the symbols correspond to the CMP simulator.
The 95% confidence interval lies within 1% of the simulation estimate.
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Figure 3.7: Plots of collision probability of HP - Priority 2 (AC BE) nodes and LP -
Priority 3 (AC BK) nodes with the number of Priority 3 nodes fixed to 8. The lines
correspond to the fixed point analysis and the symbols correspond to the CMP simulator.
The 95% confidence interval lies within 1% of the simulation estimate.

Remarks 3.3.1 (AIFS Differentiation and Multistability) It has been observed that

(see, e.g., Section 3.5) as the number of nodes in the system increases, AIFS provides non-

preemptive service to high priority nodes, starving the low priority nodes. This may lead

to long periods of time when high priority nodes get serviced while the low priority nodes

wait. We capture this behaviour using the Markov model in Figure 3.2. This cannot be

viewed as multistability (as seen in Chapter 2), because AIFS always gives preferential ac-

cess to the high priority nodes, while starving the low priority nodes, and never the other

way. Further, in our analysis on AIFS, the attempt probability β(i) of a class i corresponds

to only those slots in which class i can attempt (rather than all slots). The variation in

attempt rate and collision probability, due to AIFS, is captured using the Markov model

shown in Figure 3.2.
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3.4 Multiple Access Categories per Node

In this section we further generalize our fixed point analysis to include the possibility

of multiple access categories (or queues) per node. We consider n nodes and ci access

categories (ACs) per node i; the ACs can be of either AIFS class (for simplicity, we

consider only two AIFS classes) and ci = c
(1)
i + c

(0)
i (the superscripts referring to the

AIFS classes as before). The ACs in a node need not have the same G(·). Since there

are multiple ACs per node, each with its own backoff process, it is possible that two or

more ACs in a node complete their backoffs at the same slot. This is then called Virtual

Collision, and is resolved in favour of the queue with the highest Collision Priority in the

node. We label the ACs from 1 to ci, with AC 1 corresponding to the highest collision

priority in the node and AC ci corresponding to the least collision priority. Unlike the

single access category per node case where a collision is caused whenever any two nodes

(equivalently, ACs) attempt in a slot, here, a AC sees a collision in a slot only when a AC

of some other node or a higher collision priority AC of the same node attempts in that

slot. A lower collision priority AC of a node cannot cause collision to a higher collision

priority AC in the same node. In Section 3.4.1 we will study multiple access categories

per node without AIFS (i.e., all the ACs wait only for DIFS) and consider AIFS later in

Section 3.4.2.

We assume that, in a node (say i), the AIFS of Class 0 ACs (with c
(0)
i ACs) exceeds

the AIFS of the Class 1 ACs (with c
(1)
i ACs) by l slots. Further, we will assume that the

class 1 ACs have higher collision priority than the class 0 ACs. This assumption conforms

with the way access categories are defined in the IEEE 802.11e standard. Also, when

collision priorities are interchanged with AIFS priorities, the actual performance of the

system would be hard to characterize.

3.4.1 Without AIFS

Let γi,j be the collision probability of AC j of node i and βi,j be the attempt probability

of AC j of node i, when the AC can attempt. The fixed point equations for this system
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are, for all i = 1, · · · , n (and j = 1, · · · , ci),

βi,j = Gi,j(γi,j) (3.9)

γi,j = 1−
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l) (3.10)

where Gi,j(·) depend on the backoff parameters of AC j of node i. The term
∏j−1

m=1(1−βi,m)

in the above equation corresponds to the higher collision priority ACs in the same node.

Observe that the Gi,j(·) definition allows the possibility of different backoff parameters

(b0, p,K) within a node.

Theorem 3.4.1 The fixed point equations for γ, obtained by substituting (3.9) in (3.10)

have a unique solution when Gi,j is monotone decreasing and Fi,j(γ) := (1−γ)(1−Gi,j(γ))

is one-to-one for all i = 1, · · · , n and j = 1, · · · , ci.

Proof: See Appendix 3.7.1.

3.4.2 With AIFS

In this section, we analyse the system where nodes have ACs of either AIFS class (the case

where there are only Class 1 ACs can be modeled using the approach in Section 3.4.1).

Define for 1 ≤ i ≤ n, 1 ≤ j ≤ ci, Ci,j ∈ {0, 1} to be the AIFS class of AC j in node i.

Writing the fixed point equations for i, j s.t. Ci,j = 1, we have,

γi,j = 1−

π(EA)
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

∏
{1≤l≤ck:Ck,l=1}

(1− βk,l)

+ π(R)
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l)

 (3.11)

and for i, j s.t. Ci,j = 0, we have,

γi,j = 1−
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l) (3.12)
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Figure 3.8: Collision probability of high priority AC (HP) and low priority AC (LP) in
a system of nodes with two ACs. Both simulation (sim) and analysis (ana) are plotted.
The backoff parameters of both the ACs (in all the nodes) are identical with b0 = 16
and AIFS = DIFS. Also plotted is the collision probability (obtained from simulation) for
single AC per node case with same backoff parameters and twice the number of nodes.
In all the cases p = 2 and K = 7. For the simulation results, the 95% confidence interval
lies within 1% of the mean value.

and βi,j = Gi,j(γi,j). π(EA) and π(R) are defined as before (see equation (3.5)), with qEA

and qR defined as

qEA =
n∏

k=1

∏
{1≤l≤ck:Ck,l=1}

(1− βk,l)

qR =
n∏

k=1

ck∏
l=1

(1− βk,l) (3.13)

Theorem 3.4.2 The fixed point equations (3.11) and (3.12) have a unique solution when

Gi,j are monotone decreasing and Fi,j(·) are one-to-one for all i = 1, · · · , n and for each

i, j = 1, · · · , ci.

Proof: See Appendix 3.7.1.
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Figure 3.9: Collision probability of high priority AC (HP) and low priority AC (LP) in
a system of nodes with two ACs. Both simulation (sim) and analysis (ana) are plotted.
For the high priority AC, b0 = 16 and AIFS = DIFS, while for the low priority AC we
have b0 = 32 and AIFS = DIFS + 1 slot. Also plotted is the collision probability (from
simulation) for the case when the two ACs of a node are considered as independent ACs
in separate nodes. In all the cases p = 2 and K = 7. For the simulation results, the 95%
confidence interval lies within 1% of the mean value.

3.4.3 Numerical Study and Discussion

Figures 3.8 and 3.9 plot performance results for the multiple ACs per node case. In

Figure 3.8, we consider a set of homogeneous nodes each with two access categories. The

backoff parameters for either AC are the same (b0 = 16, p = 2, K = 7 and AIFS =

DIFS). The figure plots the collision probability of the higher priority (HP) AC and the

low priority (LP) AC in simulation as well as the analysis. Also plotted in comparison is

the collision probability (from simulation) for the single AC per node case with twice the

number of nodes. Notice that, except for small n, the performance of the high priority

AC and the low priority AC are almost identical (the backoff parameters are identical),

and close to the performance of the single AC per node case (see Remark 3.4.1 below).

In Figure 3.9, we again consider a set of nodes each with two access categories. The

higher priority AC has b0 = 16 and AIFS = DIFS, while the low priority AC has b0 = 32

and AIFS = DIFS + 1 slot. p = 2 and K = 7 for either case. Figure 3.9 plots the

collision probability of the high priority AC and the low priority AC from simulation as
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well as the analysis. Also plotted is the collision probability (from simulation) obtained

by modeling the two ACs in a node as independent ACs in separate nodes. Notice again

that except for small n, the performance of the multiple queue per node case is close to

the performance of the single queue case.

Remarks 3.4.1 The above observations from Figures 3.8 and 3.9 can be understood as

follows. From the fixed point equations in Section 3.4, we see that for the high priority

AC in any node, only one term corresponding to the low priority AC of the same node

is missing (for the systems in Figures 3.8 and 3.9 with two ACs), in comparison to the

case in which all the ACs are in 2n separate nodes. Hence, as n increases, the effect of

this single AC in the same node diminishes, and the performance of the multiple queue

per node case coincides with the performance of the single queue per node case each with

one of the original ACs.

3.5 Throughput Differentiation: An Analytical Study

It should be noted that all the results in this section are for the fixed point solution.

Hence, when we use the term “collision probability” and “attempt rate” it is only in so

far as a good match between the fixed point analysis and simulation has already been

reported in earlier literature (see Section 3.1).

We will consider two alternatives forK, the maximum retransmission attempts allowed

for a packet, namely K = ∞ and K finite. In this section, for the finite K case, the form

of the function G(γ), for all γ, 0 ≤ γ ≤ 1 is,

G(γ) =
1 + γ + γ2 + . . .+ γK

b0(1 + pγ + p2γ2 + . . .+ pKγK)
(3.14)

It is clear that for finite K the attempt rate of a node is lower bounded, and hence as

the number of nodes increases to infinity the collision probability of any node goes to 1.

Hence, for this case, we will obtain insights regarding performance differentiation only for

a finitely large number of nodes. For the infinite K case, however, we will study (as in

[6]) the asymptotics of performance differentiation as the number of nodes tends to ∞.
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In the K = ∞ case, the function G(γ) simplifies to,

G∞(γ) =


(1−γp)
b0(1−γ)

0 ≤ γ < 1
p

0 γ ≥ 1
p

(3.15)

In the nonhomogeneous case we will write G(1)
∞ (γ) and G(0)

∞ (γ). For the homogeneous case

with K = ∞, the (balanced fixed point) asymptotic analysis as n→∞ was performed in

[6].

Consider a set of nodes, divided into two classes, Class 1 and Class 0, with Class 1

corresponding to a higher priority of service. For simplicity, we assume that n(1) and n(0),

the number of nodes of Class 1 and Class 0 respectively, are related as, n(1) = αn, n(0) =

(1 − α)n for some n and α, 0 < α < 1. Let γ(1)(K,n) and β(1)(K,n) be the fixed point

solutions for the collision probability and attempt rate of a Class 1 node for a given K

and total number of nodes n. Similarly, let γ(0)(K,n) and β(0)(K,n) be the corresponding

values for a Class 0 node.

We will study three cases:

Case 1: b
(1)
0 < b

(0)
0 , p(1) = p(0) = p, AIFS(1) = AIFS(0) = DIFS

Case 2: b
(1)
0 = b

(0)
0 = b0, p

(1) < p(0), AIFS(1) = AIFS(0) = DIFS

Case 3: b
(1)
0 = b

(0)
0 = b0, p

(1) = p(0) = p, AIFS(1) < AIFS(0)

Note that in the analysis in earlier sections, we used the Binomial model for the number

of attempts in a slot. With n→∞, in this section, we will use the Poisson batch model

for the number of attempts in a slot (as in [6]).

3.5.1 Case 1: Differentiation by b0

K = ∞, Asymptotic Analysis as n→∞

With the random number of attempts of each class in a backoff slot being modeled as

Poisson distributed, the collision probabilities γ(·)(∞, n) and the attempt rates β(·)(∞, n)
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are related by

γ(1)(∞, n) = 1− e−((n(1)−1)β(1)(∞,n)+n(0)β(0)(∞,n))

γ(0)(∞, n) = 1− e−(n(1)β(1)(∞,n)+(n(0)−1)β(0)(∞,n)) (3.16)

Substituting β(·)(∞, n) = G(·)
∞(γ(·)(∞, n)) in the above equations gives the desired fixed

point equations governing the system. Trivially, we see that,

(1− γ(1)(∞, n))e−β(1)(∞,n) = (1− γ(0)(∞, n))e−β(0)(∞,n) (3.17)

Lemma 3.5.1 For i ∈ {0, 1}, F (i)
∞ (γ) := (1−γ)e−G

(i)
∞ (γ) is one-to-one for all γ, 0 ≤ γ ≤ 1

if bi0 ≥ 2p+ 1.

Proof: See Appendix 3.7.1.

Theorem 3.5.1 In Case 1, with K = ∞, when F (i)
∞ is one-to-one for i ∈ {0, 1},

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1
p
, limn→∞ γ(0)(∞, n) ↑ 1

p

3. limn→∞(n(1)β(1)(∞, n) + n(0)β(0)(∞, n)) ↑ ln( p
p−1

)

Proof: See Appendix 3.7.1.

Theorem 3.5.2 In Case 1, with K = ∞, the ratio of the throughputs of Class 1 and

Class 2 converges to
b
(0)
0 −p

b
(1)
0 −p

as n→∞.

Proof: See Appendix 3.7.1.

Remark: Thus, for example, if b
(1)
0 = 16, b

(0)
0 = 32, and p = 2 then the ratio of the

Class 1 to Class 0 node throughput will be approximately 30/14 for large n.
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Finite K, Approximate Analysis for Large n

With finite K, as the number of nodes increases, the collision probability of either class

increases to 1 (since the attempt rate is lower bounded) and G(·) is small (since it decreases

like 1
b0pK+1 , see equation (3.14)). Then the difference between the collision probabilities is

given by (we drop the arguments K and n in the following),

γ(1) − γ(0) = (G(0)(γ(0))−G(1)(γ(1)))(1−G(0)(γ(0)))(n(0)−1)(1−G(1)(γ(1)))(n(1)−1)

also becomes insignificant. Hence, we can assume that γ(1) ≈ γ(0). For equal packet length

transmission, the ratio of the throughputs of a Class 1 node to a Class 0 node corresponds

to the ratio of their success probabilities, hence the throughput ratio is given by,

G(1)(γ(1))(1−G(1)(γ(1)))n(1)−1(1−G(0)(γ(0)))n(0)

G(0)(γ(0))(1−G(1)(γ(1)))n(1)(1−G(0)(γ(0)))n(0)−1
=

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

(3.18)

Using γ(1) ≈ γ(0) and writing this as γ, and using the fact that G(·)(γ) ≈ 0 for large n, we

have,

(3.18) ≈
G(1)(γ)

(1−G(1)(γ))

G(0)(γ)

(1−G(0)(γ))

≈ G(1)(γ)

G(0)(γ)
=
b
(0)
0

b
(1)
0

It follows that when service differentiation is provided by the backoff window, for a large

number of nodes, the throughput ratio roughly corresponds to
b
(0)
0

b
(1)
0

, which, for large values

of b
(0)
0 and b

(1)
0 is almost that same as that obtained for the asymptotic analysis with

K = ∞ in Theorem 3.5.2

Remark: For finite K case, this observation (throughput ratio is approximately equal to

b
(0)
0

b
(1)
0

) is well known. This result has been shown analytically (using similar approximations)

and also has been observed in simulations (see [10], [34] and [30]). It has been observed

in [6] that for a given number of nodes, n, there will exist a K(n) such that the system

performance will not vary much for all K > K(n). Hence, an asymptotic analysis would

suffice for such cases.
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3.5.2 Case 2: Differentiation by p

It may be noted that in the current version of IEEE 802.11e standard this mechanism no

longer exists [2].

K = ∞, Asymptotic Analysis as n→∞

The fixed point equations governing the collision probability and the attempt rate is the

same as (3.16). The following theorem summarizes the main results for Case 2.

Theorem 3.5.3 In Case 2, with K = ∞, when F (i)
∞ is one-to-one for i ∈ {0, 1}, the

following hold:

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1
p(1) , limn→∞ γ(0)(∞, n) ↑ 1

p(1)

3. limn→∞ n(1)β(1)(∞, n) ↑ ln( p(1)

p(1)−1
)

4. limn→∞ n(0)β(0)(∞, n) = 0

Proof: See Appendix 3.7.1.

Remark: Thus we see that, withK = ∞ and a large number of nodes, unlike initial backoff

based differentiation, the persistence factor based differentiation completely suppresses the

class with the larger value of p.

Finite K, Approximate Analysis for Large n

For finite K, with the approximation γ(1) ≈ γ(0) and the fact that G(·)(γ(·)) ≈ 0, the

throughput ratio approximates to (1+p(0)γ+p(0)2γ2+...+p(0)K
γK)

(1+p(1)γ+p(1)2γ2+...+p(1)K
γK)

(see equation (3.18)). Hence,

as the collision probability of the system increases with load, the ratio of the throughputs

of Class 1 to Class 0 also increases (depending on p(1), p(0) and the value of K). We note

that as n→∞, the throughput ratio for the finite K case is finite, unlike the asymptotic

case (K = ∞). However, the ratio tends to infinity when we consider K →∞.
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3.5.3 Case 3: Differentiation by AIFS

K = ∞, Asymptotic Analysis for n→∞

In this case service differentiation is provided only by AIFS and we let G(1)
∞ = G(0)

∞ = G∞

(i.e., the backoff parameters b0 and p are the same). With the assumption that the

number of attempts in each slot is Poisson distributed, the fixed point equations for the

AIFS model are (see equations (3.6) and (3.7))

γ(1)(∞, n) = π(EA)(1− e−(n(1)−1)β(1)(∞,n)) +

π(R)(1− e−(n(1)−1)β(1)(∞,n)−n(0)β(0)(∞,n))

γ(0)(∞, n) = (1− e−n(1)β(1)(∞,n)−(n(0)−1)β(0)(∞,n))

Theorem 3.5.4 In Case 3, with K = ∞, when F (i)
∞ is one-to-one for i ∈ {0, 1},

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1
p
, limn→∞ γ(0)(∞, n) ↑ 1

p

3. limn→∞ n(1)β(1)(∞, n) ↑ ln( p
p−1

)

4. limn→∞ n(0)β(0)(∞, n) = 0

Proof: See Appendix 3.7.1.

Remark: Again we see that using AIFS for differentiation (for K = ∞ and n large)

completely suppresses the class with the larger value of AIFS. Observe that Parts 3 and

4 of Theorem 3.5.4 imply that the individual node attempt ratio β(1)(∞,n)

β(0)(∞,n)
goes to ∞ as

n→∞. Some insight into this result will be obtained from the analysis in the following

sections.
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Finite K, Approximate Analysis

Lemma 3.5.2 In Case 3 for finite K, with l = 1, if the fixed point collision probabilities

are γ(1) and γ(0), then the ratio of the throughputs of Class 1 to Class 0 is given by

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

1

qR

Proof: See Appendix 3.7.1.

Using this result and approximating (1−G(i)(γ(i))) ≈ 1 as before, the ratio of throughput

equals

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

1

qR
≈ G(1)(γ(1))

G(0)(γ(0))

1

qR
(3.19)

For general l, we can expect a factor like 1
ql
R

in the previous expression. For low loads,

when qR is not close to 0, the dominating term in the previous expression is G(1)(γ(1))

G(0)(γ(0))
.

At high loads, both the terms contribute to throughput differentiation depending on the

values of n(1) and n(0).

3.5.4 Numerical Study and Discussion

In Figure 3.10 we plot throughput ratios obtained from the CMP simulator for two classes

of nodes differentiated by either b0, p or AIFS. We note that this is the throughput ratio

if the packet sizes of the two classes are equal. If the packet sizes are unequal then we

only need to multiply the throughput ratio plotted here by the ratio of the packet lengths

of the two classes. Also plotted is the analytical results obtained from our fixed point

approach. The following remarks help in interpreting the results in Figure 3.10.

Remarks 3.5.1

1. Consider AIFS based differentiation. For finite K the attempt rates are bounded

below, and the term G(1)(γ(1))

G(0)(γ(0))
is bounded, but as (n(1)+n(0)) →∞ the idle probability
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AIFS = 0/1, b
0
 = 16/16, n(1) = n(0)
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0
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0
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Figure 3.10: Ratio of the throughput of a Class 1 (higher priority) node to the throughput
of a Class 0 node (lower priority). Analysis results (solid lines) and simulation results
(symbols). Four cases are considered: +: differentiation only by AIFS with equal number
of nodes, n(1) = n(0); ?: differentiation by AIFS and by b0 with equal number of nodes,
n(1) = n(0); •: differentiation only by b0 with equal number of nodes, n(1) = n(0); ◦:
differentiation only by AIFS with, 5 = n(1) � n(0). In all cases p = 2 and K = 7 for
either class. For the simulation results, the 95% confidence interval lies within 1% of the
average value.
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qR → 0 ensuring (see equation (3.19)) that the individual node throughput ratio

goes to ∞ for finite K as well (similar to the asymptotic results in Theorem 3.5.4).

In addition, when n(1) increases, π(EA) increases to 1. Hence, the lower priority

nodes (with larger AIFS) rarely get a chance to attempt and the throughput ratio

goes to infinity; this is demonstrated by the simulation results in Figure 3.10, plots

with + and ?. When n(1) is kept constant and n(0) is increased (which is more

typical), the collision probability of Class 0 nodes increases to 1 and their success

probability tends to 0. However, the collision probability of Class 1 nodes remains

much less than 1 depending on the value of n(1) and hence again the throughput ratio

tends to ∞ (see Figure 3.10, plots with ◦). Figure 3.10 also shows the throughput

ratio when only b0 is used for differentiation (plots with •); notice that, as shown

earlier, the throughput ratio is just the reciprocal of the ratios of the initial backoff

durations, and does not change with n.

2. For Case 3, in general, γ(1) and γ(0) are different, unlike in Cases 1 and 2. This is

captured by the first term in the expression G(1)(γ(1))

G(0)(γ(0))
1

qR
.

3. Notice that similar results for AIFS hold even when the functions G(1) and G(0) are

not identical (see Figure 3.10, plot with ?). A comparison between the plots with

+ and ? in Figure 3.10 shows the effect of using both b0 and AIFS for throughput

differentiation. Adding b0 based differentiation causes the entire curve to shift up

(in favour of the higher priority class), and AIFS still causes the ratio to increase

with increasing n.

3.6 Summary

In this chapter we have studied a multidimensional fixed point equation arising from a

model of the backoff process of the EDCA access mechanism in IEEE 802.11e wireless

LANs. We have provided simple sufficient conditions on the node backoff parameters that

guarantee that a unique fixed point exists. We have shown that the default IEEE 802.11e

parameters satisfy these sufficient conditions. The IEEE 802.11e standard motivated
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us to consider the nonhomogeneous case, and our results suggest certain safe ranges of

parameters that guarantee the uniqueness of the fixed point.

Using the fixed point analysis, we were also able to obtain insights into how the

different backoff parameters provide throughput differentiation between the nodes in a

nonhomogeneous system. We observed that using initial backoff window, in general, a

fixed throughput ratio can be achieved. On the other hand, using p and AIFS the

service can be significantly biased towards the high priority class, with the differentiation

increasing in favour of the high priority class as the load in the system increases. We also

observed that the effect of collision priority, where there are multiple access categories per

node, decreases when the number of nodes increases.

This chapter is concerned with the saturation throughput analysis of an IEEE 802.11e

single cell WLAN without fading and capture. In Chapter 4, we have developed a general

framework to analyse single cell systems with capture. Performance analysis of IEEE

802.11 networks comprising intefering co-channel cells was studied in [39], using a similar

fixed point approach discussed in this chapter.

3.7 Appendix

3.7.1 Proofs of Theorems and Lemmas

Proof of Lemma 3.3.1

Rewriting (3.6), for all i, 1 ≤ i ≤ n(1), we get,

(1− γ
(1)
i ) =

n(1)∏
j=1,j 6=i

(1− β
(1)
j )

π(EA) + π(R)
n(0)∏
k=1

(1− β
(0)
k )



Multiplying by (1− β
(1)
i ) and using the fact that β

(1)
i = G(1)(γ

(1)
i ), we have,

(1− γ
(1)
i )(1−G(1)(γ

(1)
i )) = π(EA)qEA + π(R)qR (3.20)
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Observing (3.20), we see that the right hand side is independent of i. Hence, if the left

hand side function, F (1)(γ) := (1− γ)(1−G(1)(γ)), is one to one, then γ
(1)
i = γ

(1)
j for all

1 ≤ i, j,≤ n(1). Similarly, we can see from (3.7) that, for all i, 1 ≤ i ≤ n(0),

(1− γ
(0)
i )(1−G(0)(γ

(0)
i )) = qR (3.21)

Hence again, γ
(0)
i = γ

(0)
j for all 1 ≤ i, j,≤ n(0), if F (0) is one to one.

Proof of Theorem 3.3.1

From Lemma 3.3.1, we already know that the fixed point is balanced within a class. Now,

assume that there exist two vector fixed point solutions, γ and λ, with the first n(1)

elements of γ are γ(1) and the remaining n(0) elements are γ(0). Similarly, the first n(1)

elements of λ are λ(1) and the next n(0) elements are λ(0).

Let us, in this proof, denote the value of qR (see equation (3.4)) for the fixed point

γ as qR(γ) and for the fixed point λ as qR(λ); similarly, we do for qEA and for other

variables.

Lemma 3.7.1 Let γ and λ be two fixed point solutions and let F (0) be one-to-one. If

γ(1) < λ(1), then γ(0) > λ(0). Also, γ(1) = λ(1) iff γ(0) = λ(0).

Proof: Without loss of generality, let γ(1) < λ(1). Then G(1)(γ(1)) > G(1)(λ(1)) (see

Chapter 2, Lemma 2.5.1). Hence,

(1−G(1)(γ(1)))n(1)

< (1−G(1)(λ(1)))n(1)

If we assume γ(0) < λ(0), then qR(γ(0)) > qR(λ(0)) (see equation (3.21)). Hence,

(1−G(1)(γ(1)))n(1)(1−G(0)(γ(0)))n(0) > (1−G(1)(λ(1)))n(1)(1−G(0)(λ(0)))n(0)

Since, (1−G(1)(γ(1)))n(1)
< (1−G(1)(λ(1)))n(1)

, we now have,

(1−G(0)(γ(0)))n(0) > (1−G(0)(λ(0)))n(0)
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which implies γ(0) > λ(0), which is a contradiction.

If γ(0) = λ(0), then qR(γ(0)) = qR(λ(0)). Hence, (1−G(1)(γ(1)))n(1)
= (1−G(1)(λ(1)))n(1)

,

Or, γ(1) = λ(1). Hence, if γ(1) < λ(1), then γ(0) > λ(0). Let γ(0) 6= λ(0), then qR(γ(0)) 6=

qR(λ(0)). Hence, (1−G(1)(γ(1)))n(1) 6= (1−G(1)(λ(1)))n(1)
, Or, γ(1) 6= λ(1).

Now, using (3.5), write the right hand side of (3.20) as

J(qEA, qR, l) :=
qEA(1 + qEA + · · ·+ ql−1

EA ) + qR
ql
EA

1−qR

1 + qEA + q2
EA + · · ·+ ql−1

EA +
ql
EA

1−qR

Lemma 3.7.2 If γ(1) < λ(1), then J(qEA(γ), qR(γ), l) < J(qEA(λ), qR(λ), l).

Proof: Consider J(qEA, qR, l).

J(qEA, qR, l) =
qEA(1 + qEA + · · ·+ ql−1

EA ) + qR
ql
EA

1−qR

1 + qEA + · · ·+ ql−1
EA +

ql
EA

1−qR

Expanding and rewriting the above equation, we get,

=
qEA + qEA(qEA − qR) + · · ·+ ql−1

EA (qEA − qR)

qEA + qEA(qEA − qR) + · · ·+ ql−1
EA (qEA − qR) + (1− qR)

which is of the form f1
f1+f2

. When γ(1) < λ(1), then γ(0) > λ(0) (from the previous lemma).

Hence,

qEA(γ)− qR(γ) =
n(1)∏
i=1

(1−G(1)(γ(1)))(1−
n(0)∏
i=1

(1−G(0)(γ(0))))

<
n(1)∏
i=1

(1−G(1)(λ(1)))(1−
n(0)∏
i=1

(1−G(0)(λ(0))))

= qEA(λ)− qR(λ)

Also, we can see that,

qEA(γ) < qEA(λ)

qR(γ) < qR(λ)
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Using the above three inequalities, we can see that,

J(qEA(γ), qR(γ), l) < J(qEA(λ), qR(λ), l)

If γ(1) < λ(1), then (1−γ(1))(1−G(1)(γ(1))) > (1−λ(1))(1−G(1)(λ(1))). However, from

the above lemma and the right hand side of (3.20), we see that we have a contradiction.

Hence, the fixed point equations have a unique solution when G(1) and G(0) are monotone

decreasing and F (1) and F (0) are one-to-one.

Proof of Theorem 3.4.1

The fixed point equations are, for all i = 1, · · · , n (and j = 1, · · · , ci),

γi,j = 1−
j−1∏
m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l)

where βi,j = Gi,j(γi,j). Clearly, by Brouwer’s fixed point theorem, there exists a fixed

point solution for the above system of equations. Rewriting the above equation, we get,

(1− γi,j)(1− βi,j) =
j∏

m=1

(1− βi,m)
n∏

{k=1,k 6=i}

ck∏
l=1

(1− βk,l)

Notice that, for 2 ≤ j ≤ ci,

(1− γi,j)(1− βi,j) = (1− γi,j−1)(1− βi,j−1)(1− βi,j)

or,

(1− γi,j) = (1− γi,j−1)(1− βi,j−1) (3.22)

when (1− βi,j) > 0.

Let us assume that there exists two fixed point solutions (γ and λ) for the system.

Without loss of generality, assume that for some node i and its AC j, γi,j < λi,j. Then,
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the following lemma shows that γk,l < λk,l for all k = 1, · · · , n and l = 1, · · · , ck.

Lemma 3.7.3 Whenever γ and λ are the fixed point solutions, and if γi,j < λi,j for some

i = 1, · · · , n and j ∈ {1, · · · , ci}, then γk,l < λk,l for all k = 1, · · · , n and all l = 1, · · · , ck.

Proof: Let γi,j < λi,j for some i ∈ 1, · · · , n and j ∈ {1, · · · , ci}. Then, using the fact

the Fi,j are strictly monotone decreasing, we have

(1− γi,j)(1−Gi,j(γi,j)) > (1− λi,j)(1−Gi,j(λi,j))

Using (3.22), we see that,

(1− γi,j+1) > (1− λi,j+1)

i.e., γi,j+1 < λi,j+1 when ever j + 1 ∈ {1, · · · , ci} and, again using (3.22), we have

(1− γi,j−1)(1−Gi,j−1(γi,j−1)) > (1− λi,j−1)(1−Gi,j−1(λi,j−1))

Or, γi,j−1 < λi,j−1 when ever j − 1 ∈ {1, · · · , ci}. Arguing as above, we see that γi,l < λi,l

for all l = 1, · · · , ci.

From the fixed point equations, we observe that for all k = 1, · · · , n,

(1− γk,ck
)(1−Gk,ck

(γk,ck
)) =

n∏
l=1

cl∏
m=1

(1−Gl,m(γl,m))

(1− λk,ck
)(1−Gk,ck

(λk,ck
)) =

n∏
l=1

cl∏
m=1

(1−Gl,m(λl,m))

But we know that

(1− γi,ci
)(1−Gi,ci

(γi,ci
)) > (1− λi,ci

)(1−Gi,ci
(λi,ci

))

since γi,ci
< λi,ci

. Hence, we have,

(1− γk,ck
)(1−Gk,ck

(γk,ck
)) > (1− λk,ck

)(1−Gk,ck
(λk,ck

))
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Or, γk,ck
< λk,ck

for all 1 ≤ k ≤ n. Arguing as before for node i, we thus have γk,l < λk,l

for all k = 1, · · · , n and l = 1, · · · , n.

Hence, if γ and λ are two fixed point solutions for the system of equations, we see

that γi,k < λi,k for all i = 1, · · · , n (and k = 1, · · · , ci), which is clearly a contradiction

(the proof is similar to that in Section 3.2 and is not provided). Hence, the system of

equations for the multiple access categories per node case (without AIFS) has a unique

fixed point.

Proof of Theorem 3.4.2

Consider ci access categories per node i with c
(1)
i ACs (1, · · · , c(1)i ) with AIFS(1), and the

remaining c
(0)
i ACs (c

(1)
i + 1, · · · , ci) with AIFS = AIFS(1) + l slots. The fixed point

equations for the system are given in (3.11) and (3.12).

As before, by Brouwer’s fixed point theorem, there exists a fixed point for the system

of equations. Assume that there exist two fixed point solutions for the above system of

equations, γ and λ with γi,j and λi,j as elements.

Let us, in this proof, denote the value of qR (see equation (3.13)) for the fixed point

γ as qR(γ) and for the fixed point λ as qR(λ); similarly, we do for qEA and for other

variables.

In a node i, consider two ACs of the same AIFS class, i.e., j and j−1 s.t. Ci,j = Ci,j−1.

As in the proof of Theorem 3.4.1, it can be shown from (3.11) or (3.12), that

(1− γi,j) = (1− γi,j−1)(1−Gi,j−1(γi,j−1))

or,

(1− γi,j) = Fi,j−1(γi,j−1)

Hence, using the one-to-one property of Fi,j(·) if γi,j < λi,j, then γi,k < λi,k for all k such

that Ci,j = Ci,k,

Now consider all those nodes with Ci,ci
= 0, i.e., the least collision priority AC in a
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node is of AIFS class 0. We then have, using (3.12) and (3.13),

(1− γi,ci
)(1−Gi,ci

(γi,ci
)) = qR(γ)

(1− λi,ci
)(1−Gi,ci

(λi,ci
)) = qR(λ)

i.e., Fi,ci
(γi,ci

) = qR(γ) and Fi,ci
(λi,ci

) = qR(λ). If qR(γ) > qR(λ), then γi,ci
< λi,ci

for all

i s.t. Ci,ci
= 0. If qR(γ) = qR(λ), then γi,ci

= λi,ci
for all i s.t. Ci,ci

= 0. Combining the

above two results, we see that for all i, j s.t. Ci,j = 0, either γi,j > λi,j or γi,j = λi,j or

γi,j < λi,j.

Without loss of generality, assume that the collision probability of Class 0 ACs is

more in γ than in λ (γ(0) > λ(0), γ(0) and λ(0) are the vector of collision probabilities

corresponding to AIFS class 0 in the vectors γ and λ respectively). Hence, qR(γ) < qR(λ).

Also, qEA(γ) < qEA(λ) (the proof is similar to that provided for AIFS with single AC per

node and is not provided), which implies γ(1) < λ(1).

Now consider the expression F (·) for the least collision priority Class 1 AC, say j, of

any node i,

(1− γi,j)(1−Gi,j(γi,j)) = π(EA,γ)qEA(γ) + π(R,γ)qR(i,j)
(γ)

(1− λi,j)(1−Gi,j(λi,j)) = π(EA,γ)qEA(λ) + π(R,γ)qR(i,j)
(λ)

where qR(i,j)
=
∏j

m=1(1 − βi,m)
∏
{1≤k≤n,k 6=i}

∏ck
l=1(1 − βk,l). Notice that q

(i,j)
R is similar to

qR except for terms corresponding to the Class 0 (with lower collision priority) ACs in

node i. Hence, if γ(0) > λ(0), then not only is qEA(γ) < qEA(λ) and qR(γ) < qR(λ), but

also, qRi,j
(γ) < qRi,j

(λ). Expanding (1− ·i,j)(1−Gi,j(·i,j)), we get,

(1− ·i,j)(1−Gi,j(·i,j)) =
(1 + qEA + q2

EA + · · ·+ ql−1
EA )qEA +

ql
EA

1−qR
qR(i,j)

1 + qEA + q2
EA + · · ·+ ql−1

EA +
ql
EA

1−qR

=
qEA + qEA(qEA − qR) + · · ·+ ql−1

EA (qEA − qR) + ql
EA(qR(i,j)

− qR)

qEA + qEA(qEA − qR) + · · ·+ ql−1
EA (qEA − qR) + (1− qR)

where qEA−qR = qEA(1−∏N
k=1

∏nk

{l=1,Ck
l
=0}(1−βk,l)) and q

(i,j)
R −qR = q

(i,j)
R (1−∏ni

{l=1,Ci
l
=0}(1−
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βi,l)). Clearly, if γ(0) > λ(0), then qEA(γ)−qR(γ) < qEA(λ)−qR(λ) and qRi,j
(γ)−qR(γ) <

qRi,j
(λ)−qR(λ). Also, we know that 1−qR(γ) > 1−qR(λ). From the above observations,

we see that, (1− γi,j)(1−Gi,j(γi,j)) < (1− λi,j)(1−Gi,j(λi,j)), which clearly implies that

γi,j > λi,j. Hence we have γ(1) > λ(1) which is a contradiction.

Also, we can see that γ(1) = λ(1) iff γ(0) = λ(0) (the proof is similar to that in

Theorem 3.3.1 and is not provided here).

Proof of Lemma 3.5.1

Consider γ such that 0 ≤ γ ≤ 1
p
. Then, G∞(γ) = (1−γp)

b0(1−γ)
. Differentiating (1− γ)e−G∞(γ),

we have,

= e−G∞(γ)(−1) + (1− γ)e−G∞(γ)(−G′

∞(γ))

But G
′
∞(γ) = 1

b0

(1−p)
(1−γ)2

. Substituting it in the previous equation, we get,

= e−G∞(γ)

(
−1− (1− γ)

1

b0

(1− p)

(1− γ)2

)

= e−G∞(γ)

(
−1− 1

b0

(1− p)

(1− γ)

)

e−G∞(γ) is always positive (since G∞(γ) < 1). For 0 ≤ γ ≤ 1
p
, the absolute value of 1

b0

(1−p)
(1−γ)

is maximum when γ = 1
p
, at which the value equals, 1

b0

(1−p)

(1− 1
p
)

= − p
b0

. Hence, the second

term is always less than (−1+ p
b0

). But, if b0 ≥ 2p+1, clearly, the second term is negative.

Hence, the derivative is always negative and never equal to zero for all 0 ≤ γ ≤ 1
p
. Hence,

the function (1 − γ)e−G∞(γ) is one-to-one in the range 0 ≤ γ ≤ 1
p
. For 1

p
≤ γ ≤ 1,

G∞(γ) = 0. Hence, (1− γ)e−G∞(γ) is one-to-one for all γ, 1
p
≤ γ ≤ 1. Also, the function

is decreasing in both the intervals 0 ≤ γ ≤ 1
p

and 1
p
≤ γ ≤ 1. Hence, (1 − γ)e−G∞(γ) is

one-to-one for all 0 ≤ γ ≤ 1.

Proof of Theorem 3.5.1

We shall prove Theorem 3.5.1 by first proving Lemmas 3.7.4 to 3.7.8.
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Lemma 3.7.4 In Case 1, with K = ∞, γ(1)(∞, n) ≤ γ(0)(∞, n) for all n.

Remark: Thus, as expected, the collision probability for the higher priority class is smaller,

for each n.

Proof: Since b
(0)
0 > b

(1)
0 , we see from (3.15) that, for every γ ∈ [0, 1], G(1)

∞ (γ) ≥

G(0)
∞ (γ). Hence, e−G

(1)
∞ (γ) ≤ e−G

(0)
∞ (γ). Hence, (1 − γ)e−G

(1)
∞ (γ) ≤ (1 − γ)e−G

(0)
∞ (γ). Since

the fixed point satisfies (3.17), it is necessary that γ(1)(∞, n) ≤ γ(0)(∞, n) holds (since

(1− γ)e−G
(·)
∞ (γ) is one-to-one decreasing).

Lemma 3.7.5 In Case 1, with K = ∞, γ(1)(∞, n) and γ(0)(∞, n) are strictly increasing

functions of n.

Proof: Consider n1 < n2. We know that

(1− γ(1)(∞, n1))e−β(1)(∞,n1) = (1− γ(0)(∞, n1))e−β(0)(∞,n1)

(1− γ(1)(∞, n2))e−β(1)(∞,n2) = (1− γ(0)(∞, n2))e−β(0)(∞,n2)

If γ(1)(∞, n1) = γ(1)(∞, n2), then using Lemma 3.5.1 we see that γ(0)(∞, n1) = γ(0)(∞, n2).

Hence β(0)(∞, n1) = β(0)(∞, n2) and β(1)(∞, n1) = β(1)(∞, n2). Since both β(0)(∞, ·) and

β(1)(∞, ·) cannot be zero, and as n1 < n2, substituting in (3.16), we get a contradiction.

Assume that γ(1)(∞, n1) > γ(1)(∞, n2). Then, from (3.17) and Lemma 3.5.1, it fol-

lows that γ(0)(∞, n1) > γ(0)(∞, n2). Also if collision probabilities decrease with n, it

would imply that the attempt rates increase with n, i.e., β(1)(∞, n1) ≤ β(1)(∞, n2) and

β(0)(∞, n1) ≤ β(0)(∞, n2). But from (3.16), we see that,

γ(1)(∞, n1) = 1− e−((n1(1)−1)β(1)(∞,n1)+n1(0)β(0)(∞,n1))

≤ 1− e−((n2(1)−1)β(1)(∞,n2)+n2(0)β(0)(∞,n2))

= γ(1)(∞, n2)

Thus we have a contradiction and the result is proved.

Lemma 3.7.6 In Case 1, with K = ∞, the attempt rates β(1)(∞, n) and β(0)(∞, n) tend

to zero as n→∞.
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Proof: If not, the exponent in the collision probability equation (3.16) tends to −∞

taking the collision probabilities to 1. However, we know that the attempt rate is zero for

all γ ≥ 1
p
, leading to a contradiction (since we are interested only in the case p > 1).

Lemma 3.7.7 In Case 1, with K = ∞, limn→∞ γ(1)(∞, n) = limn→∞ γ(0)(∞, n)

Proof: We have

0 < γ(1)(∞, n)− γ(0)(∞, n) = e−((n(1)−1)β(1)(∞,n)+(n(0)−1)β(0)(∞,n))(e−β(1)(∞,n) − e−β(0)(∞,n))

≤ (e−β(1)(∞,n) − e−β(0)(∞,n)) →n→∞ 0

which proves the required result.

Lemma 3.7.8 In Case 1, with K = ∞, γ(1)(∞, n) < γ(0)(∞, n) < 1
p

for all n.

Proof: We first observe that γ(1)(∞, n) < 1
p

for all n. Otherwise, by Lemma 3.7.4

and Lemma 3.7.5, 1
p
≤ γ(1)(∞, n) ≤ γ(0)(∞, n) for all n > N for some N . Hence,

β(1)(∞, n) = β(0)(∞, n) = 0 for all n > N . However, substituting in (3.16) gives a

contradiction.

Now assume that γ(0)(∞, n) ≥ 1
p

for all n ≥ N for someN . Since, γ(.)(∞, n) is a strictly

increasing function of n, we can, without loss of generality, assume that γ(0)(∞, n) > 1
p

for all n ≥ N for some N . Hence, β(0)(∞, n) is zero for all n ≥ N . But we know that

the collision probability of Class 1 also increases with n and the limit of the collision

probability of Class 1 and Class 0 are equal. Hence, γ(1)(∞, n) exceeds 1
p

for all n ≥ N
′

for some N
′
, which is a contradiction.

Since γ(1)(∞, n) and γ(0)(∞, n) are less than 1
p
, the inequality in Lemma 3.7.4 becomes

strict, i.e., γ(1)(∞, n) < γ(0)(∞, n) for all n (when b
(0)
0 > b

(1)
0 , G(0)

∞ (γ) < G(1)
∞ (γ) for all

0 ≤ γ ≤ 1
p
).

Combining the above Lemmas, we see that γ(1)(∞, n) < γ(0)(∞, n) for all n (From

Lemma 3.7.8). Using the fact that β(·)(∞, n) → 0 as n→∞ and γ(1)(∞, n) < γ(0)(∞, n) <

1
p

for all n, we get limn→∞ γ(·)(∞, n) = 1
p

as n → ∞ (from (3.15)). Substituting

γ(·)(∞, n) → 1
p

as n→∞ in (3.16), we see that limn→∞(n(1)β(1)(∞, n)+n(0)β(0)(∞, n)) ↑

ln( p
p−1

), thus completing the proof of Theorem 3.5.1.
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Proof of Theorem 3.5.2

In the following, for notational simplicity, we drop the argument (∞, n). Consider the

necessary condition, that a fixed point solution satisfies.

(1− γ(1))(1−G(1)
∞ (γ(1))) = (1− γ(0))(1−G(0)

∞ (γ(0)))

Since we are interested only in the range 0 ≤ γ ≤ 1
p
, we can substitute for G∞(γ) = (1−γp)

b0(1−γ)
,

and further simplify the equation to,

(1− γ(1))− 1

b
(1)
0

(1− γ(1)p) = (1− γ(0))− 1

b
(0)
0

(1− γ(0)p)

Rearranging the terms, we have,

(γ(0) − γ(1)) =
1

b
(1)
0

(1− γ(1)p)− 1

b
(0)
0

(1− γ(0)p)

Further

b
(1)
0

(1− γ(1)p)
(γ(0) − γ(1)) = 1− b

(1)
0

b
(0)
0

(1− γ(0)p)

(1− γ(1)p)

Let us rewrite the left hand side of this equation as follows

b
(1)
0

(1− γ(1)p)
(γ(0) − γ(1)) =

b
(1)
0

p

(γ(0)p− γ(1)p)

(1− γ(1)p)

=
b
(1)
0

p

(1− γ(1)p)− (1− γ(0)p)

(1− γ(1)p)

=
b
(1)
0

p

(
1− (1− γ(0)p)

(1− γ(1)p)

)

Substituting back this expression for the left hand side into the original equation, we have

b
(1)
0

p

(
1− (1− γ(0)p)

(1− γ(1)p)

)
= 1− b

(1)
0

b
(0)
0

(1− γ(0)p)

(1− γ(1)p)
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Rearranging terms, we obtain

b
(1)
0

p
− 1 =

(1− γ(0)p)

(1− γ(1)p)

b(1)
0

p
− b

(1)
0

b
(0)
0


Finally the calculation yields

(1− γ(1)p)/b
(0)
0

(1− γ(0)p)/b
(1)
0

=
(b

(0)
0 − p)

(b
(1)
0 − p)

(3.23)

For equal packet length case, the ratio of the throughput of the nodes equals the ra-

tio of their success probabilities in a slot (see, for example, [18] and [6]) which, upon

simplification, yields (we reintroduce the dependence on n in the notation)

β(1)(∞, n)

(1− β(1)(∞, n))

(1− β(0)(∞, n))

β(0)(∞, n)

As n→∞, β(1)(∞, n) and β(0)(∞, n) tends to 0. Also we know that β(·)(∞, n) is of the

form (1−γ(·)(∞,n)p)

b
(·)
0 (1−γ(·)(∞,n))

and γ(·)(∞, n) < 1
p

for all n. Since

lim
n→∞

γ(1)(∞, n) = lim
n→∞

γ(0)(∞, n)

we have limn→∞(1− γ(1)(∞, n)) = limn→∞(1− γ(0)(∞, n)). Hence, using (3.23), the ratio

of the throughputs, as n→∞, can be seen to converge to
(b

(0)
0 −p)

(b
(1)
0 −p)

as n→∞.

Proof of Theorem 3.5.3

Lemma 3.7.9 For Case 2, with K = ∞, and F (i)
∞ one-to-one

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. γ(1)(∞, n) and γ(0)(∞, n) strictly increase with n

3. β(1)(∞, n) and β(0)(∞, n) tend to 0 as n→∞

4. γ(1)(∞, n) < γ(0)(∞, n) < 1
p(1) ,∀n
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5. limn→∞ γ(1)(∞, n) = limn→∞ γ(0)(∞, n) = 1
p(1)

The proof follows in similar lines as in Lemmas 3.7.4 - 3.7.8 and hence is not provided

here.

Lemma 3.7.10 In Case 2, with K = ∞, n(0)β(0)(∞, n) → 0 as n→∞.

Proof: Since

lim
n→∞

γ(1)(∞, n) = lim
n→∞

γ(0)(∞, n) =
1

p(1)
>

1

p(0)

we have, β(0)(∞, n) = 0 for all n > N for some N . Hence, limn→∞ n(0)β(0)(∞, n) = 0.

Remark: Thus, the aggregate attempt rate of the Class 0 goes to zero, while the aggregate

attempt rate of the Class 1 governs the system performance.

From Lemma 3.7.9, we see that γ(1)(∞, n) < γ(0)(∞, n) for all n and limn→∞ γ(1)(∞, n) ↑
1

p(1) , limn→∞ γ(0)(∞, n) ↑ 1
p(1) . Lemma 3.7.10 shows that limn→∞ n(0)β(0)(∞, n) = 0.

Hence, substituting in the fixed point equations for Case 2, we get limn→∞ n(1)β(1)(∞, n) ↑

ln( p(1)

p(1)−1
) completing the proof of Theorem 3.5.3.

Proof of Theorem 3.5.4

Lemma 3.7.11 In Case 3, γ(1)(∞, n) and γ(0)(∞, n) are strictly increasing functions of

n.

Proof: Rewriting the fixed point equations for AIFS, we have,

(1− γ(1)(∞, n))e−β(1)(∞,n) = e−n(1)β(1)(∞,n)(π(EA) + π(R)e−n(0)β(0)(∞,n))

(1− γ(0)(∞, n))e−β(0)(∞,n) = e−n(1)β(1)(∞,n)−n(0)β(0)(∞,n) (3.24)

Consider n1 < n2.

Assume that γ(0)(∞, n1) > γ(0)(∞, n2) (hence, β(0)(∞, n1) ≤ β(0)(∞, n2)). As γ(0)(∞, n)

decreases with n, (1− γ)e−G(γ) increases. Hence, qR = e−n(1)β(1)(∞,n)−n(0)β(0)(∞,n) increases
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with n. Since qR increases with n and β(0)(∞, n) is non-decreasing with n, we require

qEA = e−n(1)β(1)(∞,n) strictly increase with n. Hence, β(1)(∞, n) strictly decreases with n

(or γ(1)(∞, n) strictly increase with n). From Lemma 3.7.2, we see that as qEA and qR

both increase with n, the R.H.S. of the first expression of (3.24) also increases with n.

From the monotonicity of (1−γ)e−G(γ), we have γ(1)(∞, n) decreasing with n which yields

a contradiction.

Assume that γ(1)(∞, n1) > γ(1)(∞, n2) (hence β(1)(∞, n) increases with n). Hence,

qEA = e−n(1)β(1)(∞,n) decreases with n. From the second expression of (3.24), we see that

if qEA decreases, then γ(0)(∞, n) must strictly increase with n (otherwise, the R.H.S. will

decrease with n, and from the monotonicity of the L.H.S., we get a contradiction). Since

γ(0)(∞, n) increases with n, qR decreases with n. Using the fact that qEA and qR decreases

with n and from Lemma 3.7.2, we see that the R.H.S. of the first equation also decreases

with n, which implies that γ(1)(∞, n) increases with n, which is a contradiction.

Assume that γ(1)(∞, n1) = γ(1)(∞, n2) (clearly, β(1)(∞, n) > 0 for all n). Then qEA

decreases with n. So from the R.H.S. of the second expression of (3.24), we need that

γ(0)(∞, n) strictly increase with n. So, qR also decreases with n. Hence, the R.H.S. of the

first equation decreases from the Lemma 3.7.2 and hence we obtain a contradiction.

Similarly, if γ(0)(∞, n1) = γ(0)(∞, n2), qR is constant. Since e−n(0)β(0)(∞,n) is non-

increasing, we require that qEA be non-decreasing (qR = e−n(0)β(0)(∞,n)qEA). Hence, we

require β(1)(∞, n) strictly decreasing with n. Hence, γ(1)(∞, n) strictly increases with n.

Hence, the L.H.S. of the first equation decreases with n. However, since qR is a constant

and qEA is non-decreasing, we have the R.H.S. of the first equation non-decreasing, which

is a contradiction.

Hence, γ(·)(∞, n) strictly increases with n.

From the above lemma, we can see that β(·)(∞, n) goes to zero as n→∞.

Lemma 3.7.12 In Case 3, with K = ∞, γ(1)(∞, n) < γ(0)(∞, n) < 1
p

for all n.

Proof: From (3.24) we can easily see that (1 − γ(1)(∞, n))e−β(1)(∞,n) ≥ (1 −

γ(0)(∞, n))e−β(0)(∞,n). Since we assumed that the function G∞(·) is the same for both
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the classes, and since we know that (1− γ)e−G∞(γ) is a strict monotone decreasing func-

tion, we have, γ(1)(∞, n) ≤ γ(0)(∞, n) for all n.

As in Lemma 3.7.8, it can be seen that γ(1)(∞, n) < 1
p

for all n. Now suppose that, that

γ(0)(∞, n) > 1
p

for all n ≥ N for some N (γ(·)(∞, n) are strictly increasing functions of n).

With β(0)(∞, n) = 0 for all n ≥ N , the only factor that governs the collision probability

of Class 1 and 0 is (n(1) − 1)β(1) and n(1)β(1). However, we know that β(1)(∞, n) goes to

zero, or γ(1)(∞, n) → γ(0)(∞, n), which requires γ(1)(∞, n) > 1
p

for some n > N
′
, leading

to a contradiction. Hence, γ(1)(∞, n) ≤ γ(0)(∞, n) < 1
p

for all n. Also, when γ(·) < 1
p
, the

inequality between the collision probabilities becomes strict, i.e., γ(1)(∞, n) < γ(0)(∞, n)

(We already know that γ(1)(∞, n) ≤ γ(0)(∞, n). The result follows from the (3.24) and

the fact that G∞(γ) is a strictly decreasing function of γ when 0 ≤ γ ≤ 1
p
).

Lemma 3.7.13 In Case 3, with K = ∞, n(0)β(0)(∞, n) → 0 as n→∞.

Proof: Since β(0)(∞, n) ≥ 0

1− e−(n(1)−1)β(1)(∞,n) ≤ 1− e−(n(1)−1)β(1)(∞,n)−n(0)β(0)(∞,n)

If n(0)β(0)(∞, n) converges to a positive value, then this inequality becomes strict in the

limit. Hence, limn→∞ γ(1)(∞, n) < limn→∞ γ(0)(∞, n), which is a contradiction, since both

γ(1)(∞, n) and γ(0)(∞, n) tend to 1
p

as n→∞ (this follows since γ(·)(∞, n) < 1
p

for all n

and β(·)(∞, n) tend to 0 as n→∞). Hence, n(0)β(0)(∞, n) goes to zero.

Using Lemmas 3.7.11 and 3.7.12, we see that γ(1)(∞, n) < γ(0)(∞, n) for all n and

limn→∞ γ(·)(∞, n) ↑ 1
p
. From the previous Lemma, we see that n(0)β(0)(∞, n) → 0. From

the fixed point equations for AIFS and Lemma 3.7.13, we obtain limn→∞ n(1)β(1)(∞, n) ↑

ln( p
p−1

), completing the proof of Theorem 3.5.4.
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Proof of Lemma 3.5.2

Consider the case of finite K with n(1) Class 1 nodes and n(0) Class 0 nodes. The success

probability for a Class 1 node is given by (we drop K and n in the notation)

G(1)(γ(1))(π(EA)(1−G(1)(γ(1)))(n(1)−1) + π(R)(1−G(1)(γ(1)))(n(1)−1)(1−G(0)(γ(0)))n(0)

)

and the success probability for a Class 0 node equals

G(0)(γ(0))π(R)(1−G(1)(γ(1)))n(1)

(1−G(0)(γ(0)))(n(0)−1)

The ratio of throughput of a Class 1 node to a Class 0 node is then given by,

G(1)(γ(1))(π(EA) + π(R)(1−G(0)(γ(0)))n(0)
)

G(0)(γ(0))π(R)(1−G(1)(γ(1)))(1−G(0)(γ(0)))(n(0)−1)

=

G(1)(γ(1))

(1−G(1)(γ(1)))
(π(EA) + π(R)(1−G(0)(γ(0)))n(0)

)

G(0)(γ(0))

(1−G(0)(γ(0)))
π(R)(1−G(0)(γ(0)))n(0)

=

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

(
π(EA)

π(R)(1−G(0)(γ(0)))n(0) + 1

)

Consider the term inside the bracket,

π(EA)

π(R)(1−G(0)(γ(0)))n(0) + 1

Let l = 1. From (3.5), we see that π(EA)
π(R)

= 1−qR

qEA
. Substituting back, we have,

1− qR

qEA(1−G(0)(γ(0)))n(0) + 1

We know that qEA(1−G(0)(γ(0)))n(0)
= qR. Hence, the above expression simplifies to

1− qR
qR

+ 1 =
1

qR
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Hence, the throughput ratio simplifies to

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

(
π(EA)

π(R)(1−G(0)(γ(0)))n(0) + 1

)
=

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

1

qR



Chapter 4

Fixed Point Analysis of IEEE

802.11(e) WLANs with Capture

4.1 Introduction

We consider a single cell IEEE 802.11(e) WLAN with DCF (EDCA) as the medium

access protocol. By “single cell”, we imply that the nodes are synchronized and every

transmission in the channel is perceived by every receiver as a busy channel. In a pure

collision channel, an attempt succeeds when there are no simultaneous transmissions in

the channel. In Chapters 2 and 3, we studied the saturation throughput performance of

IEEE 802.11(e) WLANs for a pure collision channel. The pure collision channel model

is an approximation aimed at simplification. In practice, the power levels of different

transmissions as heard at the receiver(s) are different, due to path loss, shadowing and

multipath fading. Then, in case of simultaneous transmissions, it is possible that one of the

signals has sufficient strength to be decoded by the receiver, i.e., one of the transmissions is

able to capture the receiver. This is particularly true when a spread spectrum modulation

is used, as is the case in the IEEE 802.11b physical layer. Also, it has been observed in the

literature that capture increases system throughput as well as induces unfairness among

nodes. Hence, it is important to model capture to accurately represent the physical reality.

In this chapter, we extend the analysis presented in Chapters 2 and 3 to include the

77
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possibility of frame capture at the receiver. We consider a single cell WLAN with IEEE

802.11(e) type nodes. We model backoff differentiation due to b0, p and K, but we do not

model AIFS based service differentiation. We assume that every transmission is heard

by every other node and there are no hidden nodes in the system. We consider both the

infrastructure WLAN model as well as the ad hoc WLAN model. Also, we assume that

the nodes always have a packet to transmit (i.e., we do saturation throughput analysis).

We believe that, an exact analysis using a complex Markovian model is prohibitive.

Hence, our aim in this work is to propose a tractable but accurate model for capture. In

Section 4.2, we propose a general framework to model capture in single cell WLANs and

obtain the fixed point equations in terms of the collision probabilities and the attempt

rates. We then discuss the network scenarios which can be satisfactorily studied using

the proposed framework. An important concern is the uniqueness of the solution of

the fixed point equations. In Section 4.3, we first show by an example that capture

introduces multiple fixed points even when the sufficient conditions for uniqueness (for a

pure collison channel) from Chapters 2 and 3 hold. In such cases, we observe that the

system exhibits multistability and that the framework fails to track the average behaviour.

Then, we obtain some sufficient conditions to guarantee a unique solution to the fixed

point equations (with capture). Finally, we prove a general uniqueness result for the

infrastructure setup with uplink traffic. Section 4.4 summarizes the results in this chapter.

4.1.1 Literature Survey

The idea of capture is that a packet with sufficient strength can be received even in the

presence of other overlapping transmissions. Successful capture depends on a variety

of factors such as received power, the type of modulation and receiver synchronization

techniques. Many models have been developed in the literature to study frame capture

probability. The models focus both on physical layer as well as MAC layer techniques.

Physical layer models assume that a packet can be successfully captured provided that the

power of the desired signal exceeds the power of the interfering signals, or, the cumulative

power of the interfering signals, by at least a capture ratio. MAC models assume that the
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receiver (randomly) locks on to one of the signals and successful packet reception occurs if

the packet is decoded without bit error. In [12], [7], [13], [33] and [22], a variety of capture

models have been studied under different channel conditions (Rayleigh, Nakagami fading)

and spatial distribution of nodes. Throughput and Delay performance of the wireless

systems is obtained by incorporating the capture probabilities into the system equations.

Early works on capture studied the performance of slotted ALOHA systems for dif-

ferent channel and traffic scenarios. In [29], the authors study the capacity of a slotted

ALOHA system, with Poisson traffic and Rayleigh fading channel, for coherent and inco-

herent addition of signals. The throughput performance of slotted ALOHA protocol in

the presence of Rayleigh fading and log-normal shadowing was studied in [46]. A similar

performance analysis for Nakagami fading was done in [59]. Initial works on 802.11 as-

sumed simple models for the backoff behaviour of the nodes. In [25], the authors study the

throughput and delay of CSMA/CA MAC in the presence of Rayleigh fading and shad-

owing. They assume an infrastructure setup and study the performance of CSMA/CA

under different handshake protocols.

Based on the Markov chain model proposed by Bianchi in [18] and the general capture

analysis for wireless systems, in [81] and [82], the authors study the performance of single

cell IEEE 802.11 WLANs with capture. In [81], the authors obtain the balanced fixed

point equations for the infrastructure setup; however, they did not solve the equations

but use an approximation (from simulations) to estimate the system performance. Similar

analysis for the infrastructure setup under homogeneous assumptions has been done in

[69], [72], [71], [22] and [17]. Using an approximation for the attempt probabilities of

the nodes, in [22], the authors develop an iterative algorithm to solve the balanced fixed

point equations. In our work, we propose to develop the fixed point equations using the

generalization proposed in [6] (and developed in Chapters 2 and 3), which makes our work

more rigorous and much simpler.

Most works on single cell scenarios have focussed on the infrastructure setup with

uplink traffic. Models on ad hoc network have been restrictive and the focus has been

more on multihop and hidden node scenarios in such cases. Also, all previous literature
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have assumed a homogeneous model for the backoff parameters as well as the channel

distribution. The fixed point equations have been analyzed only for the balanced solution

without studying the possibility of multiple fixed points. In our work, we generalize

the framework and obtain a vector fixed point equation for the system. We study the

possibility of multiple solutions to the fixed point equations and provide conditions under

which the system has a unique solution.

4.2 Fixed Point Framework with Capture

Consider a single cell WLAN with n IEEE 802.11e nodes using EDCA as the medium

access protocol. We assume that the nodes are saturated and denote by Ri the unique

receiver of transmitter i. Let γ := (γ1, · · · , γn) be the vector of the average collision

probabilities of the nodes, and β := (β1, · · · , βn) be the vector of their average attempt

probabilities. Here again, we assume that all rates are conditioned on being in the backoff

periods; i.e., we have eliminated all durations other than those in which nodes are count-

ing down their backoff counters. As explained in [6] this suffices to obtain the collision

probabilities for a single cell scenario. Define N as the set of all subsets of {1, · · · , n}.

N corresponds to the set of all simultaneous transmitters in a slot. For α ∈ N (a set of

transmitters), define pα as the probability of the event α in a given slot. We note here that

pα is a function of the attempt probabilities (β) of the nodes. Define ciα as the probability

of capture for node i at its receiver Ri conditioned on the event α (for i ∈ α, α ∈ N ).

We make the following assumptions in our model as in [18], decoupling of the attempt

process of the nodes and the nodes perceive an average collision probability independent

of their backoff state. Further, we assume stationary capture probabilities with mean

ciα. The decoupling approximation is to assume that the aggregate attempt process of

the competing nodes is independent of the backoff process of the tagged node. By the

constant collision probability assumption, we mean that the aggregate behaviour of the

competing nodes is characterized by a constant collision probability in every slot. The
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collision probability of a node, γi, is now given by, for all i, 1 ≤ i ≤ n,

γi =
∑

α∈Ni

pα × (1− cii,α) (4.1)

where Ni is the set of all non-empty subsets of {1, · · · , i − 1, i + 1, · · · , n}, cii,α corre-

sponds to the capture probability of node i in the event {i} ∪ α and pα is given by

pα :=
∏

j∈α βj
∏
{j /∈α,j 6=i}(1 − βj). We can now obtain the attempt probabilities of the

nodes, βi, from βi = Gi(γi) (where Gi(·) is the node response formula discussed in Chap-

ter 2, Section 2.2). Equations (4.1) with βi = Gi(γi) for all 1 ≤ i ≤ n constitute the fixed

point equations of the system.

Remark: Similar models have been proposed to study WLANs with capture in [81], [69],

[72], [71], [22] and [17]. The major improvement in our model is the use of the analytical

expression G(·) for the attempt process of the nodes. Our model is very general as it

allows non-homogeneity in the attempt process, Gi(·) for each i, as well as in the channel

perceived by the nodes, ciα for each i and every α. The non-homogeneity permits us to

model IEEE 802.11e EDCA as well as different network scenarios such as the infrastruc-

ture and the ad hoc modes of traffic. For example, in an infrastructure setup, only one

transmission can be successful in a slot. Hence, we require
∑

i:i∈α c
i
α ≤ 1 for all α ∈ N .

However, for an ad hoc model, we can have simultaneous successful transmissions in a

slot, and hence, we allow
∑

i:i∈α c
i
α > 1. Our formulation allows us to model a variety of

such cases.

4.2.1 Validity of the Model

In this section, we elaborate on the network scenarios which can be modeled using our

framework. We first discuss the applicability of the framework to the infrastructure

and the ad hoc network models. We then note that the decoupling assumption and

the constant collision probability assumption puts a restriction on the channel model,

mobility and the spatial reuse in the network. The restrictions discussed hold not only

for our work but also for the literature described in Section 4.1.1. Simulation results have



Chapter 4. Fixed Point Analysis of IEEE 802.11(e) WLANs with Capture 82

been included, when necessary, to explain our viewpoint.

Infrastructure Mode

IEEE 802.11(e) permits two different network models: infrastructure and ad hoc. In the

infrastructure mode, all traffic in the network is through the access point (AP). Hence, at

any point of time, even with capture, the system supports only one transmission in the

network. In terms of ciα, this implies that
∑

i:i∈α c
i
α ≤ 1 for all α ∈ N .

Consider an infrastructure setup with 8 IEEE 802.11e AC BE stations (access category

best-effort as defined in the standard 802.11e) indexed from 1 to 8. We assume that

the stations are saturated and there is only uplink traffic (AP does not contend with

the stations). We will assume the following capture model in the system. In case of

simultaneous transmissions, the node with the least index (assumed to have the best

channel) among the simultaneous transmitters captures the receiver with certainty, i.e.,

ciα = 1 if i = arg min{α}

= 0 otherwise

Substituting the capture probabilities in (4.1) and simplifying the equations, we have, for

all 1 ≤ i ≤ n,

γi = 1−
i−1∏
j=1

(1− βj)

Figure 4.1 plots the collision probability and the attempt rate of the 8 nodes from the fixed

point analysis and simulation. Notice that the fixed point analysis provides an excellent

match to the observed system performance. As expected, the collision probabilities and

the attempt rates of the nodes are ordered, with node 1 seeing no collision and node 8

seeing the largest collision in the channel.

In the previous example, ciα ∈ {0, 1} for all α ∈ N and i ∈ α. However, for a

Rayleigh fading channel between the stations and the AP, we do not restrict ourselves to

discrete values for ciα and let ciα ∈ [0, 1]. Consider an infrastructure setup with 8 IEEE

802.11e AC BE stations. Suppose that the transmitters see a homogeneous Rayleigh
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Figure 4.1: Collision probability and attempt rate of 8 IEEE 802.11e AC BE nodes in an
infrastructure setup with uplink traffic. The capture probabilities of the system are given
by ciα = 1 when i = arg min{α} and ciα = 0 otherwise.

fading channel towards the AP and our capture model is such that the node with the

highest SINR succeeds in packet transmission. Then, ciα = 1
|α| for all α ∈ N and i ∈ α.

Figure 4.2 plots the collision probabilities and attempt rates for the scenario from the

analysis and simulation. Observe that the collision probabilities (and the attempt rates)

are the same for all nodes (as expected for a homogeneous system of nodes).

From the plots, we observe that the general framework proposed in (4.1) models the

infrastructure setup very well, and has been reported in [81], [69], [72], [71] and [22] as

well. Later, in Section 4.3.3, we study the fixed point equations for the infrastructure

setup and show that the fixed point is unique.

Ad hoc Mode

The ad hoc network model permits nodes to communicate directly among themselves.

With capture, this implies that the system can support multiple transmissions simulta-

neously in the network. We restrict ourselves to a single cell model, i.e., whenever there

is a transmission in the channel, every other node can perceive it and freezes its backoff.

Capture permits simultaneous transmissions in the system only when the nodes attempt

in the same slot.
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Figure 4.2: Collision probability and the attempt rates of 8 IEEE 802.11e AC BE nodes
in an infrastructure setup with uplink traffic. The capture probabilities of the nodes are
given by ciα = 1

|α| .

Most works in the literature assume that the proposed framework models the ad

hoc network very well. In Section 4.3, we show using an example that in an ad hoc

setup, capture can lead to multistability even in single cell systems (similar to those

studied in [67]) and the framework fails to characterize the average system performance.

The counter-example suggests that careful modeling is required while studying ad hoc

networks with capture.

Stationary Capture Probabilities

In equation (4.1), we have assumed a constant collision probability γi, for a node i,

in every slot. This assumption requires that the capture probabilities be stationary,

because, variation in capture probabilities can lead to unacceptable levels of variation

in the collision probabilities perceived by the nodes, which may not be tracked by our

framework. Changes in capture probabilities of the nodes may be attributed to slow node

mobility or slow fade changes in the links. Our framework assumes time homogeneity and

does not model such scenarios.

Consider a single cell WLAN with 8 IEEE 802.11e “type” nodes in an infrastructure
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Figure 4.3: Attempt process of a mobile node in real time (over 1000 slot window).

setup with uplink traffic. We consider an exponentially increasing backoff G(·) (like in

Chapter 2, equation 2.5) with bk = p × bk−1, b0 = 4, p = 2, K = 7. We note that the

backoff parameters are very similar to the backoff values defined in the IEEE 802.11e

standard. Also, for a pure collision channel and for the backoff response function G(·)

defined above, we note that the fixed point equations have a unique solution. We will

assume the following node mobility model and channel capture model. At the end of every

backoff slot, nodes change their positions with probability 0.0001, and the node locations

are chosen uniformly within the cell. The transmission attempt of a node succeeds only

when there are no simultaneous transmissions in the channel, or, when the node is the

closest to the access point (AP). Figure 4.3 plots the attempt process of a tagged node

in real time for the above network. Observe that the attempt rate of a node significantly

varies over different time intervals. When the node is the closest to the AP, most of its

attempts succeed and the average attempt rate is large (> 100 in the figure). When the

tagged node is not the closest to the AP, the probability of collision increases and hence,

it decreases its attempt rate (≈ 50 in the figure). The average collision probability and

the attempt rate of the nodes from simulations was found to be 0.31 and 0.09 respectively.

Substituting 0.31 in the backoff equation, we getG(0.31) = 0.14, which is much larger than

the average attempt rate obtained from the simulations. The error between the simulation
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Figure 4.4: A 3 link wireless network. The circles represent the sensing and the interfer-
ence range of the communication link located at the center of the circle. Links 1 and 3
are hidden from each other, while link 2 interferes with both the links 1 and 3.
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Figure 4.5: Collision probability and long term average throughput from simulation for
the example network shown in Figure 4.4.

and the analysis clearly shows that the framework does not support time correlation in

the channel.

Multihop and Hidden Nodes

One of the key assumptions in the proposed framework is the decoupling assumption. This

assumption works when the nodes are synchronized, i.e., the channel evolution needs to

be identical for all the nodes in the network. We observe that in multihop and hidden

node scenarios, the channel evolution is not identical, and hence, our framework need

not capture the system performance. Consider a simple three link example shown in

Figure 4.4. Links 1 and 3 are hidden from each other and they do not interfere. Link 2
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interferes with both the links 1 and 3. The fixed point equations of the system are

γ1 = γ3 = β2, γ2 = 1− (1− β1)(1− β3)

Observe that the fixed point equations are independent of the packet size (packet trans-

mission duration). Figure 4.5 plots the average collision probability and the long term

average throughput obtained from simulations for increasing packet size (as a ratio of

the backoff slot). Observe that for large packet sizes, the throughput of links 1 and 3

increases, while the throughput of link 2 decreases. Also, the collision probability of links

1 and 3 decreases with increasing packet size. Transmissions of links 1 and 3 are not

synchronized. For large packet sizes, one of the two links (1 or 3) freezes the backoff

engine of the link 2, thereby decreasing the attempt rate (and throughput) of link 2 and

the collision probability of the links 1 and 3. The decoupling approximation, assumed in

the framework, does not hold in this scenario.

Our observations show that to model correlations in channel, mobility and scenarios

like multihop and hidden nodes, one needs to enhance the framework by incorporating

additional features specific to the scenario. We do not study such enhancements in this

work, and is beyond the scope of this chapter.

4.3 Uniqueness of the Fixed Point

In this section, we will study the uniqueness of the fixed point for the set of equations

(4.1). We will first show, using a counterexample, that capture can lead to multistability

(and multiple fixed points) in single cell WLANs, even when the uniqueness conditions for

a pure collision channel hold. Then, using a contraction mapping, we will obtain sufficient

conditions to guarantee a unique solution to the fixed point equations (4.1). Finally, we

will prove a general uniqueness result for the infrastructure setup with uplink traffic.

In the previous chapters, we observed the importance of uniqueness of the fixed point

for single cell WLANs (for a pure collision channel). Multiple fixed points suggested

multistability, and further, the fixed point analysis did not capture the average system
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Figure 4.6: A four link wireless network operating as a single cell WLAN. The circles
represent the interference range of the communication link located at the center of the
circle.

performance as well. The backoff behaviour of the nodes was the reason. We also observed

that when the backoff function G(γ) is such that (1− γ)(1−G(γ)) is not one-to-one, the

system may have multiple fixed points. Trivially, for such a G(·), it is easy to construct

examples for systems with capture, where the fixed point equations have multiple solu-

tions. We are not interested in such examples, and our focus is to study the impact of

capture on multistability, and the interaction between the backoff process and the capture

probabilities. Hence, we will always assume that G(·) is monotone and F (·) is one-to-one

and decreasing.

4.3.1 Counterexample

Consider an 8 node system comprising four links 1, 2, 3 and 4 as shown in Figure 4.6. All

the nodes can hear each other and there are no hidden nodes in the system (a single cell

scenario). The links are located such that links 1 and 3 do not interfere with each other,

in case of simultaneous transmissions. Similarly, links 2 and 4 do not interfere with each

other in case of simultaneous transmissions. The capture probabilities of this system are

given by,

c11 = 1, c22 = 1, c33 = 1, c44 = 1
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c11,2 = 0, c21,2 = 0, c11,3 = 1, c31,3 = 1, c11,4 = 0, c41,4 = 0

c22,3 = 0, c32,3 = 0, c22,4 = 1, c42,4 = 1

c33,4 = 0, c43,4 = 0

c·1,2,3 = 0, c·1,3,4 = 0, c·2,3,4 = 0

c·1,2,3,4 = 0

Substituting the above capture probabilities in the fixed point equations (4.1) and sim-

plifying the equations, we get,

γ1 = 1− (1−G2(γ2))(1−G4(γ4)) = γ3

γ2 = 1− (1−G1(γ1))(1−G3(γ3)) = γ4

Suppose that all the nodes use the following backoff parameters, with G modeling the

attempt process of the nodes given by,

G(γ) =
1 + γ + γ2 + γ3 + γ4 + γ5 + γ6 + γ7

2(1 + (2γ) + (2γ)2 + (2γ)3 + (2γ)4 + (2γ)5 + (2γ)6 + (2γ)7)

We note here that G(γ) is monotone decreasing and (1 − γ)(1 − G(γ)) is one-to-one.

Hence, without capture, the system of fixed point equations will have a unique solution.

Also, the backoff parameters are similar to the IEEE 802.11e setup, albeit with a smaller

CWmin. Substituting G(·) in the above equations, we get,

γ1 = 1− (1−G(γ2))
2

γ2 = 1− (1−G(γ1))
2

Figure 4.7 plots 1− (1−G(1− (1−G(γ))2))2 (line with plus) with respect to γ, the inter-

section of which with the ”y=x” line shows the fixed point solutions. Also, plotted in the

figure is (1−γ)(1−G(γ)) (lines with dots). Observe that even though (1−γ)(1−G(γ)) is

one-to-one and decreasing, the system allows multiple fixed points. The three fixed points

read from the graph for (γ1, γ2, γ3, γ4) are (0.09, 0.69, 0.09, 0.69), (0.69, 0.09, 0.69, 0.09) and
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Figure 4.7: Figure plots 1−(1−G(1−(1−G(γ))2))2 (line with plus) and (1−γ)(1−G(γ))
(lines with dots) with respect to γ. Observe that the function (1 − γ)(1 − G(γ)) is one-
to-one. Yet, the system permits multiple fixed points.

(0.38, 0.38, 0.38, 0.38). Clearly, the fixed point solutions suggest a multistability between

the pair of links 1, 3 and 2, 4. Simulating the backoff process of the nodes, we observed

multistability in channel access and short-term unfairness in the throughput received.

The average collision probability of the nodes (from simulation) was found to be 0.117,

whereas, the balanced fixed point from the analysis (Figure 4.7) yields 0.38. Thus, we

see that capture induces multistability in single cell scenarios. The impact was observed

as multiple fixed points. And, the balanced fixed point did not match the system perfor-

mance.

The example clearly shows that modeling capture in a single cell setup requires more

care, and the framework is not appropriate for every single cell WLAN.

4.3.2 A Contraction Mapping

In the previous section, we observed that the sufficient conditions to guarantee a unique

fixed point for a pure collision channel model, were not sufficient in the presence of

capture. In this section, using contraction mapping, we will obtain sufficient conditions

to guarantee uniqueness of the fixed point for the equations (4.1).
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Lemma 4.3.1 Let
∣∣∣∂Γi

∂βj

∣∣∣ ≤ 1 for all 1 ≤ i, j ≤ n. Then the system of equations (4.1) has

a unique fixed point, whenever

n

(
sup

{i:1≤i≤n,γ:0≤γ≤1}
G′

i(γ)

)
< 1

Proof: Let us rewrite the fixed point equations (4.1) in a compact form, in terms

of the vector of the attempt probabilities β as, β = G(Γ(β)), where βi = Gi(Γi(β)) =

Gi(γi). For any two vectors β1 and β2, we have from the mean value theorem,

|Γi(β
1)− Γi(β

2)| ≤ n

(
sup

{j:1≤j≤n}

(
|β1

j − β2
j | sup
{βj :0≤βj≤1}

∣∣∣∣∣∂Γi

∂βj

∣∣∣∣∣
))

Using the hypothesis
∣∣∣∂Γi

∂βj

∣∣∣ ≤ 1, we get,

|Γi(β
1)− Γi(β

2)| ≤ n

(
sup

{j:1≤j≤n}
|β1

j − β2
j |
)

(4.2)

Suppose that β1 and β2 are distinct fixed point solutions of β = G(Γ(β)). Then,

|β1
i − β2

i | = |Gi(Γi(β
1))−Gi(Γi(β

2))|

≤
(

sup
{γ:0≤γ≤1}

|G′
i(γ)|

)
|Γi(β

1)− Γi(β
2)|

where the last inequality follows from the mean value theorem. Substituting from (4.2)

in the previous inequality, we have,

|β1
i − β2

i | ≤ n

(
sup

{j:1≤j≤n}
|β1

j − β2
j |
)(

sup
{γ:0≤γ≤1}

|G′
i(γ)|

)

Taking supremum over i on both the sides, we get,

sup
{i:1≤i≤n}

|β1
i − β2

i | ≤ n

(
sup

{j:1≤j≤n}
|β1

j − β2
j |
)(

sup
{i:1≤i≤n,γ:0≤γ≤1}

|G′
i(γ)|

)
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Thus, when

n

(
sup

{i:1≤i≤n,γ:0≤γ≤1}
|G′

i(γ)|
)
< 1

we conclude that β1 = β2, or, the set of equations (4.1) has a unique fixed point solution.

We will now show that the inequality |∂Γi

∂βj
| ≤ 1 holds true for our setup. Without

AIFS, all the nodes attempt with a constant attempt probability βi(= Gi(γi)) in every

slot. Then, pα is given by,

pα :=

∏
k∈α

βk

∏
k/∈α

(1− βk)


Differentiating γi = Γi(β) w.r.t. βj, we have from (4.1)

∂Γi

∂βj

=
∂

∂βj

∑
α∈Ni

pα(1− cii,α)


=

∂

∂βj

 ∑
α∈Ni,j∈α

pα(1− cii,α) +
∑

α∈Ni,j /∈α

pα(1− cii,α)


=

∂

∂βj

βj

∑
α∈Ni,j∈α

pα−{j}(1− cii,α) + (1− βj)
∑

α∈Ni,j /∈α

pα−{j}(1− cii,α)


=

 ∑
α∈Ni,j∈α

pα−{j}(1− cii,α)

−
 ∑

α∈Ni,j /∈α

pα−{j}(1− cii,α)


where pα−{j} is the probability of the event α − {j} and is not a function of βj. Since

pα−{j} ≥ 0 for all α ∈ Ni and the capture probabilities are non-negative, we have,

∣∣∣∣∣∂Γi

∂βj

∣∣∣∣∣ ≤

 ∑
α∈Ni,j∈α

pα−{j}(1− cii,α),
∑

α∈Ni,j /∈α

pα−{j}(1− cii,α)


But (1− cii,α) ≤ 1 and

∑
α∈Ni,j∈α pα−{j} ≤ 1 for all i and α. Hence, we have,

∣∣∣∣∣∂Γi

∂βj

∣∣∣∣∣ ≤ 1

Theorem 4.3.1 summarizes the above discussions.
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Figure 4.8: Collision probability and attempt rate, from analysis (balanced fixed point)
and simulations for the example network shown in Figure 4.6. bk = p × bk−1, p = 2 and
K = 7.

Theorem 4.3.1 For n IEEE 802.11e type nodes, with Gi defined as in Chapter 2, equa-

tion (2.1), bk,i = b0,ip
k
i , Ki ≥ 1, pi ≥ 2, and n < maxi

{
b0,i

2pi

}
, the system of equations (4.1)

has a unique fixed point.

Proof: For Gi(γ) defined as in equation (2.1) with bk,i = b0,ip
k
i , Ki ≥ 1 and pi ≥ 2,

lemma 2.5.3 from Chapter 2 showed that

sup
{γ:0≤γ≤1}

|G′
i(γ)| ≤

2pi

b0,i

Hence, from Lemma 4.3.1, we see that the set of fixed point equations (4.1) has a unique

fixed point whenever n < maxi

{
b0,i

2pi

}
.

Remarks 4.3.1

1. Figure 4.8 plots the collision probability and the attempt rate, from analysis (bal-

anced fixed point) and simulations, for the example network shown in Figure 4.6

(n = 4). We have assumed the same capture model (and probabilities) discussed in

the example. G(·) is defined as in (2.1), and we have assumed bk = p× bk−1, p = 2
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and K = 7 in the example. As expected, for large b0, we see an excellent match

between the analysis and the simulations.

2. In [26], the authors study the fixed point equations of a single cell IEEE 802.11

WLAN for a pure collision channel, using contraction mapping techniques. They

use a game-theoretic model to study the backoff behaviour of the nodes. In our

work, we have used a renewal argument from [6] and have extended the results to

WLANs with capture.

4.3.3 Infrastructure Mode with Uplink Traffic

In Section 4.3.2, we obtained a sufficient condition to guarantee uniqueness of the fixed

point of (4.1). In this section, we will focus on the infrastructure setup with uplink traffic

and homogeneous channel conditions. We will show that, for the infrastructure setup, the

sufficient conditions for a pure collision channel guarantee a unique solution for the fixed

point equations (4.1) even with capture.

Consider n homogeneous nodes in an infrastructure setup with Gi(γ) = G(γ) for all

1 ≤ i ≤ n. We assume that the function G(γ) is monotone decreasing and the function

F (γ) := (1− γ)(1−G(γ)) is one-to-one and decreasing. Also, we assume that the nodes

are saturated and there is only uplink traffic. We will make the following assumption on

the channel.

Assumption 1 (Homogeneous Capture Model) There is a sequence of numbers ck, k ≥

0, 0 ≤ ck ≤ 1, such that for each α ∈ Ni, c
i
i,α = c|α|. c

i
0 := 1.

The assumption states that the capture probabilities are independent of the competing

nodes (the event α) and depend only on the number of competing nodes (|α|). The above

assumption could model the situation in which the nodes are all the same distance from

the AP and have identical Rayleigh fading channel.
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Using the framework developed in Section 4.2 and the homogeneous capture assump-

tion, the collision probabilities of the STAs are now given by, for all 1 ≤ i ≤ n,

γi := 1−

∏
j 6=i

(1− βj) + c1
∑
j 6=i

βj

∏
k/∈{i,j}

(1− βk) + c2
∑

j 6=i,k 6=i,k>j

βjβk

∏
m/∈{i,j,k}

(1− βm) + · · ·

(4.3)

where βi = G(γi).

Lemma 4.3.2 If γ = (γ1, · · · , γn) is a fixed point solution to (4.3), then γi = γi′ for all

1 ≤ i, i′ ≤ n.

Proof: Rearranging (4.3) and multiplying (1− βi) on either side of the equation, we

get, for 1 ≤ i ≤ n,

(1− γi)(1− βi) =
∏
j

(1− βj)

1 + c1
∑
k 6=i

βk

(1− βk)
+ c2

∑
k 6=i,l 6=i,l>k

βk

(1− βk)

βl

(1− βl)
+ · · ·


For any two nodes i and i′, 1 ≤ i, i′ ≤ n,

(1− γi)(1− βi)− (1− γi′)(1− βi′) =∏
j

(1− βj)

c1
(

βi′

(1− βi′)
− βi

(1− βi)

)
+ c2

(
βi′

(1− βi′)
− βi

(1− βi)

) ∑
k/∈{i,i′}

βj

(1− βj)
+ · · ·


Suppose that γi < γi′ . Then F (γi) = (1− γi)(1−G(γi)) > (1− γi′)(1−G(γi′)) = F (γi′)

(since F (·) is one-to-one and also decreasing). Hence, the left hand side of the above

equation is strictly greater than 0 . Consider the R.H.S., we have
∏

j(1 − βj) ≥ 0 and

c1, c2, · · · ≥ 0. When γi < γi′ , then βi = G(γi) ≥ G(γi′) = βi′ . Hence, βi

(1−βi)
≥ βi′

(1−βi′ )
,

or the R.H.S. is non-positive, which yields a contradiction. Since i and i′ were chosen

arbitrarily, we see that γi = γi′ or the fixed point solution for the system is balanced.

Let us denote this common value by γ. With the observation that the fixed point

solution for the collision probabilities is balanced, it follows as well that the attempt

probabilities βi, are all equal; denote the common value by β (= G(γ)). The collision
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probability equation (4.3) now simplifies to

γ =
n−1∑
k=1

(n− 1)!

(n− 1− k)!k!
βk(1− β)n−1−k(1− ck) (4.4)

Thus the multidimensional fixed point equation becomes a one-dimensional equation γ =

Γ(G(γ)). To establish uniqueness, and knowing that G(·) is nonincreasing, it suffices to

show that (4.4) is nondecreasing in its argument. We will show that if ck are nonincreasing

with k, then (4.4) is nondecreasing with β, which will establish that the fixed point is

unique.

Lemma 4.3.3 When ck are nonincreasing, (4.4) is nondecreasing with β.

Proof: Since the binomial distribution for (n−1) “trials” with “success” probability

β is the convolution of (n−1) Bernoulli distributions each with success probability β, and

the Bernoulli distribution is obviously stochastically increasing with β, it follows that the

binomial distribution is stochastically increasing with β. Hence (4.4) is the expectation

of an increasing function of k (i.e., (1− ck)) with respect to the binomial distribution that

is stochastically increasing with the parameter β. Hence, (4.4) is nondecreasing with β.

We now have the following general result.

Theorem 4.3.2 Let G(γ) be a monotone decreasing function and F (γ) be one-to-one

and decreasing. Then there exists a unique fixed point solution for the system of equations

(4.3) when ck are nonincreasing. Further the fixed point is balanced.

Proof: Brouwer’s fixed point theorem guarantees the existence of a fixed point

solution to (4.3). The uniqueness of the fixed point follows from Lemma 4.3.2 and

Lemma 4.3.3.

Corollary 4.3.1 For a single cell IEEE 802.11(e) EDCA WLAN with homogeneous

nodes and saturated queues, all sending uplink data to the AP, the fixed point equations

have a unique solution.
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4.4 Summary

In this chapter, we have proposed a general framework to study single cell IEEE 802.11(e)

WLANs with the possibility of frame capture at the receiver. We have incorporated

a simplification proposed in [6] to model the attempt process of IEEE 802.11e nodes.

This allows us to study a variety of network scenarios including non-homogeneity in the

backoff parameters of the nodes (IEEE 802.11e EDCA). We discussed in detail, the traffic

scenarios and the channel conditions that can be studied using the proposed framework.

One of the main contributions in this chapter is to identify the possibility of multistability

due to capture. We show using an example that capture can lead to multistability among

the nodes, causing short-term unfairness in the throughput received. We observed that

the set of equations characterizing such systems can have multiple solutions, and the

balanced fixed point fails to capture the average system behaviour. Hence, we provide

sufficient conditions that guarantee a unique solution to the fixed point equations. In

particular, we show that for homogeneous IEEE 802.11e nodes in an infrastructure setup

with uplink traffic, the fixed point equations have a unique solution.
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Chapter 5

Spatial Reuse and Cooperative

Communication in Dense Wireless

Networks

5.1 Introduction

We consider a wireless network comprising n nodes confined to a two dimensional region of

fixed area A (independent of n). Such networks are called dense or fixed SNR networks,

because, the attenuation between any transmitter-receiver pair is lower bounded by a

positive quantity, which is a function of the diameter of the area A. Source-destination

(s-d) pairs are chosen randomly (as in the Gupta-Kumar random traffic model, [50]) and

the s-d pairs communicate by sharing the common wireless channel. For an average power

constraint p at a node, we consider a total network average power constraint, P̄ , where

P̄ = np. For a realistic interference and path loss model, we are interested in the scaling

of the aggregate end-to-end throughput between the s-d pairs with respect to the network

power constraint P̄ , and the number of nodes n.

Using a far-field path loss model of 1
dη for every transmitter-receiver separation of

d, in [50], Gupta and Kumar showed that the end-to-end throughput of dense wireless

networks scales as Θ
(
n

1
2

)
. It was first observed in [49] that Θ

(
n

1
2

)
scaling is not feasible

99
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in realistic scenarios, as the far-field path loss model (used in [50]) assumes a channel

power gain greater than unity for very small d. In our work, we study the scaling laws

of dense wireless networks with a realistic path loss model and observe that it depends

not only on the number of nodes (n), but also on the network power constraint (P̄ ). Our

main result is that the end-to-end throughput of dense networks scales only as Θ(log(P̄ ))

(or as Θ(log(n)), when P̄ = np for a fixed p), due to interference from simultaneous

transmitters and bounded distance between any transmitter-receiver pair. This contrasts

with the Θ
(
n

1
2

)
scaling achievable for an extended network, where the size of the network

scales as n (see for e.g., [50] and [9]). Viewed differently, the logarithmic scaling of the

aggregate end-to-end throughput follows from the fact that the maximum achievable bit-

rate in the network scales only as Θ(log(P̄ )) or Θ(log(n)), and not as Θ(n) (as in extended

networks).

The logarithmic scaling, for n tending to infinity, or, for very large P̄ , is achieved us-

ing direct communication between the source-destination pairs, without any spatial reuse.

However, better scaling results are achievable for small and moderate P̄ , by using spatial

reuse, multihopping or other communication techniques. For the path loss model of 1
dη ,

[50] showed that spatial reuse and multihopping achieves an end-to-end throughput of

Θ
(
n

1
2

)
. A recent result, [60], achieved Θ

(
n

2
3

)
throughput using cooperative communi-

cation techniques, in a rich scattering environment. The idea is to organize nodes into

clusters which would communicate data for the nodes in a single hop. Using the coop-

erative communication technique proposed in [60], and by implementing a hierarchy, [9]

obtained a Θ(n) throughput for dense wireless networks. The above results (as reported

in [50], [60] and [9]) are not feasible for a realistic path loss scenario, and the scaling fails

when the nodes become sufficiently close. While it is true that the scaling does not hold

for n tending to infinity, we are interested in understanding the feasibility of the com-

munication strategies for sufficiently large n (when the path loss model of 1
dη still holds).

For such a scenario (when the path loss model still holds for the given area A and a node

density n), we observe that the amount of spatial reuse feasible in the network is limited

by the diameter of the network. In fact, we show that the spatial reuse achievable in the
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network is inversely proportional to the end-to-end path loss in the network. This puts a

restriction on the gains achievable using cooperative communication techniques discussed

in [60] and [9], as they rely on direct communication over long distances in the network.

We observe that, while spatial reuse and multihopping (as reported in [50]) can provide

throughput enhancements for sufficiently large n, even in realistic scenarios, cooperative

communication gains (as reported in [60] and [9]) may not be achievable.

5.1.1 Outline of the Chapter

In Section 5.2, we define the dense wireless network model, the realistic interference and

path loss model and the objective function. In Section 5.3, we show that the aggregate

throughput of a dense network scales only as Θ(log(P̄ )) or Θ(log(n)). We discuss the

feasibility of spatial reuse and cooperative communication for practical dense wireless

networks in Section 5.4. We summarize the results in Section 5.5.

5.2 Network Model and Assumptions

We consider a wireless network comprising n nodes distributed over a two dimensional

region of fixed area A.

• n
2

source-destination pairs are formed in the network, with each node belonging to

a distinct s-d pair. The s-d pairs are chosen randomly such that the mean s-d pair

distance is O(1), with respect to the diameter of the network.

• The s-d pairs communicate by sharing the common wireless channel. The channel

power gain between any transmitter-receiver pair is assumed fixed, and is determined

by the path loss between them.

• We consider a total network average power constraint P̄ , accounting only for the

transmit power of all the nodes in the network. Further, the nodes have an individual

average power constraint p, that is related to P̄ as P̄ = np. In our work, we assume
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that p is fixed for a given scenario, and hence, the network power constraint P̄ scales

as n. We do not model a maximum power constraint per node.

• We assume that the system is slotted and nodes communicate over the slots of fixed

duration. We consider a realistic physical model of interference (SINR based) in

the network. When the nodes use single user decoding transceivers, we assume that

the bit rate achieved between a transmitter and a receiver is given by Shannon’s

formula, C = log2(1 + SINR) bits per symbol.

• When the nodes communicate cooperatively, we assume that the nodes are synchro-

nized without any additional overheads.

5.2.1 Path Loss Model

In [50], it was assumed that the power gain between a transmitter and a receiver scaled

with the distance d as 1
dη , where η > 2 is the path loss exponent. While this holds true for

far-field distances, the above model is not appropriate when the receiver is very close to

the transmitter. In our work, we use a generalized model in which the channel power gain

between a node pair (i, j) is αi,j, where 0 < αA ≤ αi,j ≤ 1; αA is the minimum channel

power gain between any transmitter-receiver pair, and is related to the diameter of the

network, dA, as αA = 1
dη

A
. The assumption αi,j ≤ 1 implies that a receiver cannot receive

power more than the power transmitted.

5.2.2 Objective

Our objective is to study the scaling of the aggregate end-to-end throughput of the dense

wireless network for the interference and path loss model discussed above. We study the

scaling laws for two different network power constraint regimes - large P̄ (in terms of P̄ )

and moderate P̄ (in terms of n). We consider spatial reuse, multihopping and cooperative

communication as the strategies used in the network.
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5.3 Scaling Laws for Large P̄

In this section, we will obtain scaling laws of dense wireless networks for large P̄ . Suppose

that the source-destination pairs are chosen arbitrarily (instead of randomly, as stated

earlier), such that the s-d pairs are chosen as close as possible. Then, the aggregate

end-to-end throughput achievable in this scenario is the same as the maximum bit rate

achievable in the network, or the maximum spatial reuse feasible. Clearly, the bit rate

achieved in this scenario, upper bounds the bit rate achieved for the random traffic model

(notice that the first phase in every communication strategy studied in [50], [60] and [9] is

spatial reuse). Now, we assume that the nodes use single user decoding receivers, treating

every simultaneous transmission (other than the intended one) as interference. We will

now upper bound the bit rate achievable in this scenario.

5.3.1 An Upper Bound on the Network Throughput

Consider a slot t, when node i, 1 ≤ i ≤ n, transmits with power Pi(t), and the transmit

powers are such that they satisfy a network power constraint,
∑n

i=1 Pi(t) ≤ P̄ (t). For ease

of notation, we will omit the index t now, and include it again later (at the end of this

section). The SINR achievable (in slot t) at the receiver of the transmitter i is bounded

above by

SINR ≤ αiPi

N +
∑
{j 6=i} αjPj

where αi and αj are the constant gains at the receiver from the transmitters i and j and

N is the noise power. Then, it follows from the path loss model, that the SINR is bounded

above by

SINR ≤ Pi

N + αA
∑
{j 6=i} Pj

(since 0 ≤ αA ≤ α ≤ 1). For an allocated total network power of P̄ , an optimal power

allocation (that maximizes throughput) must satisfy
∑

i Pi = P̄ . Hence, using the equality
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∑
i Pi = P̄ in the above expression, we have,

SINR ≤ Pi

N + αA(P̄ − Pi)

Now, the maximum throughput achievable in the network is bounded above by

C(αA) :=
∑

i

log

(
1 +

Pi

N + αA(P̄ − Pi)

)

We denote the above expression as C(αA), denoting the dependence on the parameter

αA. We will now maximize C(αA) by optimizing the above expression for Pi, i.e., we will

maximize C(αA) subject to the power constraint
∑

i Pi ≤ P̄ .

5.3.2 The Optimization Problem

Define f(P ) := log
(
1 + P

N+αA(P̄−P )

)
. Then the optimization problem we are interested in

can be written as

max
∑

i

f(Pi) (5.1)

subject to the power constraint ∑
i

Pi ≤ P̄

Lemma 5.3.1 f(P ) is monotone increasing with P for 0 ≤ P ≤ P̄ .

Proof: See Appendix 5.6.1.

Lemma 5.3.2 Suppose that 2αA − 1 > 0. Then, f is convex in P for 0 ≤ P ≤ P̄ .

Further, the solution for the optimization problem in (5.1) is to allot all the power to a

single transmitter. And the optimal value for the objective function in (5.1) is f(P̄ ).

Proof: See Appendix 5.6.1.

Lemma 5.3.3 Suppose that 2αA − 1 < 0. For large P̄ , there exists a P ′, 0 ≤ P ′ ≤ P̄ ,

such that f(P ) is concave upto P ′ and convex thereafter.
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Proof: See Appendix 5.6.1.

f(P̄ ) = log
(
1 + P̄

N

)
, increases to infinity with P̄ , and f ′(0) = 1

N+αAP̄
, decreases to

0 as P̄ increases. Now, observe that, for large P̄ , we have f ′(0) ≤ f(P̄ )
P̄

. The following

lemma upper bounds f(P ) for all 0 ≤ P ≤ P̄ .

Theorem 5.3.1 Suppose that 2αA−1 < 0. For large P̄ , f(P ) ≤ f(P̄ )
P̄
P for all 0 ≤ P ≤ P̄ .

Proof: See Appendix 5.6.1.

Define g(P ) := f(P̄ )P
P̄
. Let {P̃i} be an optimal solution for the optimization problem

(5.1). From Theorem 5.3.1 and the definition of g(·), we have,

∑
i

f(P̃i) ≤
∑

i

g(P̃i)

whenever P̄ is large enough. Observe that,

∑
i

g(P̃i) =
∑

i

f(P̄ )

P̄
P̃i =

f(P̄ )

P̄

∑
i

P̃i =
f(P̄ )

P̄
P̄ = f(P̄ )

This implies that for large P̄ , f(P̄ ) ≥ ∑
i f(Pi), for any power allocation, or f(P̄ ) is the

optimal solution. Thus, log
(
1 + P̄

N

)
is an upper bound on the network throughput. This

implies that the maximum achievable bit rate for a dense network with arbitrary s-d pairs

is O(log(P̄ )).

Remark:

1. We have only shown that for a per slot network power constraint P̄ (t), the aggre-

gate bit rate scales as log(P̄ (t)). It is now straightforward to extend the above

results to a sequence of network power constraints {P̄ (t), t = 1, 2, · · ·} which satisfy

limt→∞
1
t

∑t
i=1 P̄ (i) ≤ P̄ .

2. We have shown that the aggregate bit rate of an arbitrary network scales asO(log(P̄ ))

(this is also the maximum bit rate achievable in the network). Hence, the aggregate

end-to-end throughput of a random network (as defined in Section 5.2) can scale

only as O(log(P̄ )).
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3. Also, observe that the above results depend only on αA and P̄ , but are independent

of the number of the nodes in the network (and hence, on the spacing between the

nodes).

4. We call all P̄ greater than the threshold (from Theorem 5.3.1) for which the logarith-

mic scaling holds, as large power regime. And networks with total power constraint

P̄ lesser than this threshold are called moderate power networks.

5. For an extended network, where the network size scales with n, the path loss from the

farthest node decreases to 0. For η > 2, [50] showed that the cumulative interference

from simultaneous transmitters can then be bounded, thus achieving Θ(n) aggregate

bit rate with spatial reuse. Using multihopping strategy, [50] achieved Θ
(
n

1
2

)
end-

to-end throughput for extended networks.

6. Consider a simple TDM scheme, where each node transmits with power P̄ = np,

to its intended destination in its slot. Since a node gets access to the channel once

in every n slots, the average power per node is P̄
n

= p. And the achieved bit rate

in the proposed scheme scales as log(n). This proves the achievability of Θ(log(n))

scaling for dense wireless networks.

The following theorem summarizes the above arguments.

Theorem 5.3.2 The aggregate end-to-end throughput of a dense wireless network scales

as Θ(log(P̄ )), where P̄ is the network average power constraint. In terms of the number

of nodes, n, the maximum achievable throughput of a dense network scales as Θ(log(n)).

5.4 Spatial Reuse and Cooperative Communication

For dense wireless networks, [50], [60] and [9] achieved Θ
(
n

1
2

)
, Θ

(
n

2
3

)
and Θ(n) end-to-

end throughput respectively, by using a far field path loss model (with a path loss of 1
dη for

any transmitter-receiver separation of d). As observed in [49], this model requires power

amplification by the channel for sufficiently small values of d, and hence, is not practical.
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The scaling fails when the nodes become sufficiently close, i.e., when n tends to infinity.

In this section, we are interested in understanding the feasibility of the communication

strategies discussed in [50] (spatial reuse and multihopping), [60] (spatial reuse, multihop-

ping and cooperative communication) and [9] (spatial reuse, multihopping, cooperative

communication and hierarchy) for sufficiently large n, when the path loss model of 1
dη still

holds.

For example, consider a 1Km× 1Km planar area, with a million nodes arranged in a

square grid with a minimum spacing of 1 meter between them. For a carrier frequency

of 3 GHz, the carrier wavelength is around 0.1m much smaller than the node separation

of 1m. The path loss model holds for this deployment, and hence, we could expect

that such results as spatial reuse (of Θ(n)), multihopping (of Θ
(
n

1
2

)
) and cooperative

communication (of Θ
(
n

2
3

)
or Θ(n)) hold approximately (for e.g., with some probability).

Observing that spatial reuse is essential to every communication strategy (studied in [50],

[60] and [9]), in this context, we will study the feasibility of Θ(n) spatial reuse in the

network, and the impact it has on using cooperative communication techniques.

The following simple calculations given below show that in order to support a spatial

reuse of Θ(n), the network size must be at least as large as Θ
(
n

1
η

)
. Let us fix the SINR

requirement for point-to-point communication to β, independent of the number of nodes

and the dimensions of the network. Suppose that all the transmissions involve constant

transmit power p. Let S(n,A) denote the spatial reuse achievable in the network with n

nodes while supporting a SINR of β. Then, this implies that the maximum interference

gain observed at any receiver needs to be bounded above, as seen below.

β ≤ SINR ≤
(

p

N + p(S(n,A)− 1)αA

)

This implies that

(S(n,A)− 1)αA ≤ γ

for some constant, γ, independent of n or p. Absorbing the constants and simplifying the



Chapter 5. Spatial Reuse and Cooperative Communication in Dense Wireless Networks108

expression, we have,

S(n,A)αA ≤ 1

Hence, to achieve a spatial reuse of Θ(n), we require,

Θ(n)αA ≤ 1 (5.2)

In terms of dA, we have,

Θ(n)
1

dη
A

≤ 1

or,

Θ(n) ≤ dη
A

The above expression implies that the total spatial reuse feasible in the network is bounded

by the dimensions of the network. In other words, to support a spatial reuse of Θ(n), the

dimensions of the network should scale at least as Θ
(
n

1
η

)
, or the area A should be as

large as Θ
(
n

2
η

)
.

Viewed differently, the end-to-end path loss between any source-destination pair (ac-

cording to the random traffic model) will scale at least as Θ
(

1
n

)
(from Equation (5.2)),

when the spatial reuse scales as Θ(n). The cooperative communication models described

in [60] and [9] (see Figure 5.1), require the source cluster (the biggest cluster containing

the source node) and the destination cluster (the biggest cluster containing the desti-

nation node) to communicate directly, using cooperative communication involving the

nodes in the cluster. For a spatial reuse of Θ(n), and the number of nodes in the cluster

M (M < Θ(n), for e.g., in [60], M = n
2
3 ), an upper bound on the maximum bit rate

achievable in the cooperative communication phase is,

n log
(
1 +

pαA

N

)
≤ n log

(
1 +

p

Θ(n)N

)

where we have modeled the cooperative communication phase as comprising of n parallel

independent channels, with only the path loss between a transmitter-receiver pair in the

cluster. Observe that the throughput, as given by the above expression does not scale as
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Phase 1 : Simultaneous
transmit M bits per s−d pair per slot from the source−cluster
to the destination−cluster. Observe that in each slot

Phase 2: Nodes use cooperative communication to Phase 3 : Simultaneous
communication within
cell and cluster with 
spatial reuse and 
multihopping. a single s−d pair.

there is only one MIMO communication involving

communication within
cell and cluster.

Figure 5.1: Cooperative communication strategy in [60]: The first phase of any coop-
erative communication strategy is spatial reuse and multihopping. Nodes cluster among
themselves (with M nodes per cluster) and communicate information within their cluster.
In the second phase of the cooperative communication strategy, clusters communicate di-
rectly with each other. There is no spatial reuse, however, M communications happen
simultaneously (between one cluster and the other). In the third phase of the communi-
cation, the nodes in the cluster use spatial reuse and multihopping again to transfer the
data to the intended destination node in the cluster.

Θ(n). In fact, it is bounded above by a constant. The key observation is that the path loss

that permits spatial reuse in the channel is so restrictive that it is unable to support long

distance MIMO communications. It is easy to verify from the above formulation that,

for any power allocation with a total network power of np, the achievable throughput

using cooperative communication (as reported in [60] and [9]) is bounded by a constant,

independent of n.

Returning to the example of a million nodes arranged in a grid in a 1Km× 1Km pla-

nar area, we see that, while spatial reuse and multihopping may increase the performance

of the system (as compared to direct transmissions involving the s-d pairs), cooperative

communication does not. In other words, while spatial reuse and multihopping can co-

exist, even in a practical scenario, for sufficiently large n, spatial reuse and cooperative

communication (as reported in [60] and [9]) cannot. The direct communication between

the source-destination clusters should be avoided in order to enhance the throughput

in realistic scenarios. However, by restricting the communication distance between the

clusters, we lose throughput due to multihopping costs.



Chapter 5. Spatial Reuse and Cooperative Communication in Dense Wireless Networks110

5.5 Summary

The important feature of a dense network, as compared to an extended network is the

positive interference due to a simultaneous transmission any where in the network. We

have observed that this implies that the scaling results are a function of both the number

of nodes and the network power. More specifically, for large power networks, we observe

that the achievable throughput scales only as Θ(log(P̄ )), irrespective of the number of

nodes in the network. However, for moderate P̄ , when spatial reuse may be efficient,

we showed that spatial reuse is restricted by the network size, which affects the gains

achievable using cooperative communication techniques.

5.6 Appendix

5.6.1 Proofs of Theorems and Lemmas

Proofs for Section 5.3

Lemma 5.3.1 : f(P ) is monotone increasing with P for 0 ≤ P ≤ P̄ .

Proof: Differentiating f(P ) with respect to P , we have,

f ′(P ) =
1

1 + P
N+αAP̄−αAP

(
1

N + αAP̄ − αAP
+

αAP

(N + αAP̄ − αAP )2

)

=
1

N + αAP̄ − αAP + P

(
1 +

αAP

(N + αAP̄ − αAP )

)

=
1

N + αAP̄ − αAP + P

(
N + αAP̄ − αAP + αAP

N + αAP̄ − αAP

)

=
(

1

N + αAP̄ + P − αAP

)(
(N + αAP̄ )

N + αAP̄ − αAP

)

Clearly, f ′(P ) ≥ 0 for all 0 ≤ P ≤ P̄ . Hence, f(P ) is monotone increasing for all

0 ≤ P ≤ P̄ .
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Differentiating f ′(P ) with respect to P again, we have,

f ′′(P ) =
d

dP

(
1

K + (1− αA)P

1

K − αAP

)

We have used the substitution K := N + αAP̄ in the above expression. Also, we are

interested only in the sign of f ′′(P ), hence, we have ignored (N +αAP̄ ) in the numerator

as well.

f ′′(P ) =
1

K − αAP

(
−1(1− αA)

(K + (1− αA)P )2

)
+

1

K + (1− αA)P

(
−1×−αA

(K − αAP )2

)

=
1

(K − αAP )(K + (1− αA)P )

(
−(1− αA)

K + (1− αA)P
+

αA

K − αAP

)

Clearly, K − αAP = N + P̄ − αAP ≥ 0 (for 0 ≤ P ≤ P̄ ) and K + (1− αA)P ≥ 0. Hence,

we will concentrate only on the terms inside the braces,

f ′′(P ) =
−(1− αA)

K + (1− αA)P
+

αA

K − αAP

=
−(K − αAP )(1− αA) + αA(K + (1− αA)P )

(K + (1− αA)P )(K − αAP )

Ignoring the denominator (which is always positive), we have,

f ′′(P ) = −[K −KαA + α2
AP − αAP ] + [αAK + αAP − α2

AP ]

= 2αAK − 2α2
AP + 2αAP −K

= (2αA − 1)K + 2αAP (1− αA)

Clearly, 1 ≥ αA. Now, if 2αA − 1 > 0, then we see that the above expression is positive

for all 0 ≤ P ≤ P̄ . Hence, f ′′ ≥ 0, or, the function f(P ) is convex increasing.

Lemma 5.3.2 : Suppose that 2αA − 1 > 0. Then, f is convex in P for 0 ≤ P ≤ P̄ .

Further, the solution for the optimization problem in (5.1) is to allot all the power to a

single transmitter. And the optimal value for the objective function in (5.1) is f(P̄ ).
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Now suppose that 2αA − 1 < 0. Then, f ′′(0) < 0 and for large enough P̄ , f ′′(P̄ ) > 0,

i.e., for large P̄ , there would exist a P ′ ≤ P̄ such that f ′′(P ′) ≤ 0 for all 0 ≤ P ≤ P ′ and

f ′′(P ) ≥ 0 for all P ′ ≤ P ≤ P̄ . The following lemma summarizes the idea.

Lemma 5.3.3 : Suppose that 2αA− 1 < 0. For large P̄ , there exists a P ′, 0 ≤ P ′ ≤ P̄ ,

such that f(P ) is concave upto P ′ and convex there after.

From the definition of f(·), we see that, f(P̄ ) = log
(
1 + P̄

N

)
increases to infinity with

P̄ . Also, f ′(0) = 1
N+αAP̄

, decreases to 0 as P̄ increases. Further, for large P̄ , we see that

f ′(0) ≤ f(P̄ )
P̄

.

Theorem 5.3.1 : Suppose that 2αA − 1 < 0. For large P̄ , f(P ) ≤ f(P̄ )
P̄
P .

Proof: From Lemma 5.3.3, we know that f(P ) is concave upto P ′. Hence, f(P ) ≤

f(0) + f ′(0)P for 0 ≤ P ≤ P ′. Since f(0) = 0, we have, f(P ) ≤ f ′(0)P . For large P̄ , we

have f ′(0) ≤ f(P̄ )
P̄

(from the previous arguments). Hence, for 0 ≤ P ≤ P ′,

f(P ) ≤ f(P̄ )

P̄
P

In the region P ′ ≤ P ≤ P̄ , f(P ) is convex increasing, hence, we have,

f(P )− f(P ′) ≤ (f(P̄ )− f(P ′))

P̄ − P ′ (P − P ′)

Simplifying the above expression, we have,

f(P ) ≤ f(P ′) + f(P̄ )
(P − P ′)

P̄ − P ′ − f(P ′)
(P − P ′)

P̄ − P ′

Or,

f(P ) ≤ f(P̄ )
(P − P ′)

P̄ − P ′ + f(P ′)

(
1− (P − P ′)

P̄ − P ′

)

Or,

f(P ) ≤ f(P̄ )
(P − P ′)

P̄ − P ′ + f(P ′)
P̄ − P

P̄ − P ′
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Substituting f(P ′) ≤ f ′(0)P ′, we have,

f(P ) ≤ f(P̄ )
(P − P ′)

P̄ − P ′ + f ′(0)P ′ P̄ − P

P̄ − P ′

For large P̄ , f ′(0) ≤ f(P̄ )
P̄

. Substituting again, we get,

f(P ) ≤ f(P̄ )
(P − P ′)

P̄ − P ′ +
f(P̄ )

P̄
P ′ P̄ − P

P̄ − P ′

Or,

f(P ) ≤ f(P̄ )

(
(P − P ′)

P̄ − P ′ +
P ′

P̄

P̄ − P

P̄ − P ′

)

Simplifying the above expression, we have,

f(P ) ≤ f(P̄ )
P

P̄

for all P ′ ≤ P ≤ P̄ , which completes the proof.



Chapter 6

Power Control and Routing for a

Single Cell, Dense Wireless Network

6.1 Introduction

In Chapter 5, we studied the capacity of dense wireless networks and showed that single

cell operation is optimal for large network power constraints. Spatial reuse was ineffective

and direct transmission between the source and the destination nodes is the throughput

optimal strategy. Spatial reuse leads to interference, which is perceived as a loss of

throughput. This makes it sub-optimal for low power networks as well (especially when

energy overheads are associated with communication). Further, scheduling simultaneous

transmissions using a distributed medium access protocol is very cumbersome. Hence,

in this chapter, we consider a dense wireless network operated as a single cell. We are

interested in a throughput maximization problem subject to a network power constraint.

We consider a scenario in which there is a large number of stationary nodes (e.g.,

hundreds of nodes) confined to a small area (e.g., spatial diameter 30m), and organised

into a multihop ad hoc wireless network. We assume that, traffic in the network is

homogeneous and data packets are sent between source-destination pairs by multihop

relaying with single user decoding and forwarding of packets, i.e., signals received from

nodes other than the intended transmitter are treated as interference. A distributed

114
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multiaccess contention scheme is used in order to schedule transmissions; for example, the

CSMA/CA based distributed coordination function (DCF) of the IEEE 802.11 standard

for wireless local area networks (WLANs). We assume that all nodes can decode all the

contention control transmissions (i.e., there are no hidden nodes), and only one successful

transmission takes place at any time in the network. In this sense we say that we are

dealing with a single cell scenario. Thus our work in this chapter can be viewed as an

extension of the performance analysis presented in Chapter 3. We further assume that,

during the exchange of contention control packets, pairs of communicating nodes are able

to estimate the channel fade between them and are thus able to perform power control

per transmission.

There is a natural tradeoff between using high power and long hop lengths (single

hop direct transmission between the source-destination pair), versus using low power and

shorter hop lengths (multihop communication using intermediate nodes), with the latter

necessitating more packets to be transported in the network. The objective of the present

chapter is to study optimal routing, in terms of the hop length, and optimal power control

for a fading channel, when the network (described above) is used in a multihop mode. Our

objective is to maximise a certain measure of network transport capacity (measured in

bit-meters per second; see Section 6.3), subject to a network power constraint. A network

power constraint determines, to a first order, the lifetime of the network.

Situations and considerations such as those that we study could arise in a dense ad

hoc wireless sensor network. Ad hoc wireless sensor networks are now being studied as

possible replacements for wired measurement networks in large factories. For example,

a distillation column in a chemical plant could be equipped with pressure and tempera-

ture sensors and valve actuators. The sensors monitor the system and communicate the

pressure and temperature values to a central controller which in turn actuates the valves

to operate the column at the desired operating point. Direct communication between

the sensors and actuators is also a possibility. Such installations could involve hundreds

of devices, organised into a single cell ad hoc wireless network because of the physical

proximity of the nodes. There would be many flows within the network and there would
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be multihopping. We wish to address the question of optimal organisation of such an ad

hoc network so as to maximise its transport capacity subject to a power constraint. The

power constraint relates to the network life-time and would depend on the application.

In a factory situation, it is possible that power could be supplied to the devices, hence

large power would be available. In certain emergencies, “transient” sensor networks could

be deployed for situation management; we use the term “transient” as these networks are

supposed to exist for only several minutes or hours, and the devices could be disposable.

Such networks need to have large throughputs, but, being transient networks, the power

constraint could again be loose. On the other hand sensor networks deployed for moni-

toring some phenomenon in a remote area would have to work with very small amounts

of power, while sacrificing transport capacity. Our formulation aims at providing insights

into optimal network operation in a range of such scenarios.

6.1.1 Preview of Contributions

We motivate the definition of the transport capacity of the network as the product of

the aggregate throughput (in bits per second) and the hop distance (in meters). For

random spatio-temporal fading, we seek the power control and the hop distance that

jointly maximizes the transport capacity, subject to a network average power constraint.

For a fixed data transmission time strategy (discussed in Section 6.2.2), we show that the

optimal power allocation function has a water pouring form (Section 6.4.1). At the optimal

operating point (hop distance and power control) the network throughput (Θopt, in bits per

second) is shown to be a fixed quantity, depending only on the contention mechanism and

fading model, but independent of the network power constraint (Section 6.4.2). Further,

we show that the optimal transport capacity is of the form dopt(P̄t)×Θopt, with dopt scaling

as P̄t

1
η , where P̄t is the available time average transmit power, and η is the power law

path loss exponent (Theorem 6.4.2). Finally, we provide a condition on the fading density

that leads to a simple characterisation of the optimal hop distance (Section 6.4.3).
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6.1.2 Motivation for Single Cell Operation

In this context (a dense, ad hoc wireless network), the seminal paper by Gupta and

Kumar [50] would suggest that each node should communicate with neighbours as close

as possible while maintaining network connectivity. This maximises network transport

capacity (in bit-meters per second), while minimising network average power. It has been

observed by Dousse and Thiran in [49], that if, unlike [50], a practical model of bounded

received power for finite transmitter power is used, then the increasing interference with

an increasing density of simultaneous transmitters is not consistent with a minimum SINR

requirement at each receiver. More recently, El Gamal and Mammen [4] have shown that,

if the transceiver energy and communication overheads at each hop is factored in, then the

operating regime studied in [50] is neither energy efficient nor delay optimal. Fewer hops

between the transmitter and receiver (and hence, less spatial reuse) reduce the overhead

energy consumption and lead to a better throughput-delay tradeoff.

While optimal operation of the network might suggest using some spatial reuse (finite,

as discussed above), coordinating simultaneous transmissions (in a distributed fashion),

in a constrained area, is extremely difficult and the associated time, energy and syn-

chronisation overheads have to be accounted for. In view of the above discussion, in

this chapter, we assume that the medium access control (MAC) is such that only one

transmitter-receiver pair communicates at any time in the network.

6.1.3 Outline of the Chapter

In Section 6.2 we describe the network model and in Section 6.3 we motivate the objective.

We study the transport capacity of a single cell multihop wireless network operating in

the fixed transmission time mode, in Section 6.4. Section 6.5 summarizes the results in

the chapter.
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6.2 Network Model and Assumptions

There is a dense collection of immobile nodes that use multiaccess multihop radio com-

munication with single user decoding and packet forwarding to transport packets between

various source-destination pairs.

• All nodes use the same contention mechanism with the same parameters (e.g., all

nodes use IEEE 802.11 DCF with the same backoff parameters).

• We assume that nodes send control packets (such as RTS/CTS in IEEE 802.11)

with a constant power (i.e., power control is not used for the control packets) during

contention, and these control packets are decodable by every node in the network.

As in IEEE 802.11, this can be done by using a low rate, robust modulation scheme

and by restricting the diameter of the network. This is the “single cell” assumption

and implies that there can be only one successful ongoing transmission at any time.

• During the control packet exchange, each transmitter learns about the channel

“gain” to its intended receiver, and decides upon the power level that is used to

transmit its data packet. For example, in IEEE 802.11, the channel gain to the

intended receiver could be estimated during the RTS/CTS control packet exchange.

Such channel information can then be used by the transmitter to do power control.

In our work, we assume that such channel estimation and power control is possible

on a transmission-by-transmission basis.

• In this work, we model only an average power constraint and not a peak power

constraint.

• Saturation assumption : We assume that the traffic is homogeneous in the network

and all the nodes have data to send at all times; these could be locally generated

packets or transit packets.

Data packets are sent between source-destination pairs by multihop relaying. We do not

restrict to straight line paths and permit arbitrary routes between the source and the
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destination nodes. For example, in [16], the authors study a load balancing strategy in

dense multihop wireless networks with arbitrary traffic requirements. In our work, we

assume that the path between the source and the destination nodes is fixed apriori and

we optimize only over the hop length taken over the path. The dense network assumption

permits us to vary the hop length arbitrarily over the path. Based on the dense network

and traffic homogeneity assumption, we further make the following assumption.

• The nodes self-organise so that all hops are of length d, i.e., a one hop transmission

always traverses a distance of d meters. This hop distance, d, will be one of our

optimisation variables.

For a random node deployment, the hop distance that maximizes the system throughput

need not be the same for every node and every flow. However, the approximation holds

good for a homogeneous network with large number of nodes. Further, it will be practically

infeasible to optimize every hop in a dense setup with hundreds of nodes.

6.2.1 Channel Model: Path Loss, Fading and Transmission Rate

The channel gain between a transmitter-receiver pair for a hop is assumed to be a function

of the hop length (d) and the multipath fading “gain” (h). The path loss for a hop distance

d is given by 1
dη , where η is the path loss exponent, chosen depending on the propagation

characteristics of the environment (see, for e.g., [64]). This variation of path loss with

d holds for d > d0, the far field reference distance; we will assume that this inequality

holds (i.e., d > d0), and will justify this assumption in the course of the analysis (see

Theorem 6.4.2).

We assume a flat and slow fading channel with additive white Gaussian noise of power

σ2. We assume that for each transmitter-receiver pair, the channel gain due to multi-

path fading may change from transmission to transmission, but remains constant over

any packet transmission duration. Since successive transmissions can take place between

randomly selected pairs of nodes (as per the outcome of the distributed contention mech-

anism) we are actually modeling a spatio-temporal fading process. We assume that this
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fading process is stationary in space and time with some given marginal distribution H.

Let the cumulative distribution of H be A(h) (with a p.d.f. a(h)), which by our assump-

tion of spatio-temporal stationarity of fading is the same for all transmitter-receiver pairs

and for all transmissions. We assume that the channel coherence time, τc, applicable to all

the links in the network, upper bounds every data transmission duration in the network.

Further, we assume that H and τc are independent of the hop distance d.

When a node transmits to another node at a distance d (in the transmitting antenna’s

far field), using transmitter power P , with channel power gain due to fading, h, then

we assume that the transmission rate given by Shannon’s formula is achieved over the

transmission burst; i.e., the transmission rate is given by

C = W log

(
1 +

hPα

σ2dη

)

where W is the signal bandwidth and α is a constant accounting for any fixed power gains

between the transmitter and the receiver. Note that this requires that the transmitter

has available several coding schemes of different rates, one of which is chosen for each

channel state and power level.

6.2.2 Fixed Transmission Time Strategy

We consider a fixed transmission time scheme, where all data transmissions are of equal

duration, T (< τc) secs, independent of the bit rate achieved over the wireless link.

This implies that the amount of data that a transmitter sends during a transmission

opportunity is proportional to the achieved physical link rate. Upon a successful control

packet exchange, the channel (between the transmitter, that “won” the contention, and its

intended receiver) is reserved for a duration of T seconds independent of the channel state

h. This is akin to the “TxOP” (transmission opportunity) mechanism in the IEEE 802.11

standard. Thus, when the power allocated during the channel state h is P (h), C(h)T

bits are sent across the channel, where C(h) = W log
(
1 + P (h)hα

σ2dη

)
. When P (h) = 0, we

assume that the channel is left idle for the next T seconds. The transmitter does not
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relinquish the channel immediately, and the channel reserved for the transmitter-receiver

pair (for example, by the RTS/CTS signalling) is left empty for the duration of T seconds.

The optimality of a fixed transmission time scheme, for throughput, as compared to a

fixed packet length scheme has been shown in Appendix 6.6.4. When using fixed packet

lengths, a transmitter may be forced to send the entire packet even if the channel is poor,

thus taking longer time and more power. On the other hand, in a fixed transmission time

scheme, we send more data when the channel is good and limit our inefficiency when the

channel is poor.

6.3 Multihop Transport Capacity

Let d denote the common hop length and {P (h)} a power allocation policy, with P (h)

denoting the transmit power used when the channel state is h. We take a simple model

for the random access channel contention process. The channel goes through successive

contention periods. Each period can be either an idle slot, or a collision period, or

a successful transmission with probabilities pi, pc and ps respectively. Under the node

saturation assumption, the aggregate bit rate carried by the system, ΘT ({P (h)}, d), for

the hop distance d and power allocation {P (h)}, is given by (see [6])

ΘT ({P (h)}, d) :=
ps(
∫∞
0 L(h) dA(h) )

piTi + pcTc + ps(To + T )
(6.1)

where L(h) = C(h)T , and, Ti, Tc and To are the average time overheads associated with

an idle slot, collision and data transmission. For e.g., in IEEE 802.11 with the RTS/CTS

mechanism being used, a collision takes a fixed time independent of the data transmission

rate. We note that pi, ps, pc, Ti, To, and Tc depend only on the parameters of the distributed

contention mechanism (MAC protocol) and the channel, and not on any of the decision

variables that we consider (i.e., d and {P (h)}).

With ΘT ({P (h)}, d) defined as in (6.1), we consider ΘT ({P (h)}, d)×d as our measure

of transport capacity of the network. This measure can be motivated in several ways.

ΘT ({P (h)}, d) is the rate at which bits are transmitted by the network nodes. When
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transmitted successfully, each bit traverses a distance d. Hence, ΘT ({P (h)}, d) × d is

the rate of spatial progress of the flow of bits in the network (in bit-meters per second).

Viewed alternatively, it is the weighted average of the end-to-end flow throughput with

respect to the distance traversed. Suppose that a flow i covers a distance Di with Di

d

hops (assumed to be an integer for this argument). Let βiΘT ({P (h)}, d) be the fraction

of throughput of the network that belongs to flow i. Then, βiΘT ({P (h)},d)
Di
d

is the end-to-end

throughput for flow i and βiΘT ({P (h)},d)
Di
d

× Di = βiΘT ({P (h)}, d) × d is the end-to-end

throughput for flow i in bit-meters per second. Summing over all the flows, we have

ΘT ({P (h)}, d)× d, the aggregate end-to-end flow throughput in bit-meters per second.

With the above motivation, our aim in this work is to maximise the quantity ΘT ({P (h)}, d)×

d over the hop distance d and over the power control {P (h)}, subject to a network average

power constraint, P̄ . We use a network power constraint that accounts for the energy used

in data transmission as well as the energy overheads associated with communication. The

network average power, P({P (h)}), is given by,

P({P (h)}) :=
piEi + pcEc + ps(Eo + T

∫∞
0 P (h) dA(h) )

piTi + pcTc + ps(To + T )
(6.2)

Ei, Ec and Eo correspond to the energy overheads associated with an idle period, collision

and successful transmission. Thus, Ei denotes the total energy expended in the network

over an idle slot, Ec denotes the total average energy expended by the colliding nodes,

as well as the idle energy of the idle nodes, and Eo denotes the average energy expended

in the successful contention negotiation between the successful transmitter-receiver pair,

the receive energy at the receiver (in the radio and in the packet processor), and the idle

energy expended by all the other nodes over the time To + T . We note that Ei, Ec and

Eo depend only on the contention mechanism and not on the decision variables d and

{P (h)}.
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6.4 Optimising the Transport Capacity

For a given {P (h)} and d, and the corresponding throughput ΘT ({P (h)}, d), the transport

capacity in bit-meters per second, which we will denote by ψ({P (h)}, d), is given by

ψ({P (h)}, d) := ΘT ({P (h)}, d)× d

Maximizing ψ(·, ·) involves optimizing over d, as well as {P (h)}. However, we observe

that, it would not be possible to vary d with fading, as routes cannot vary at the fading

time scale. Hence, we propose to optimize first over {P (h)} for a given d, and then

optimize over d, i.e., we seek to solve the following problem,

max
d

max
{{P (h)}:P({P (h)})≤P̄}

ψ({P (h)}, d) (6.3)

For a given d and power allocation {P (h)}, define the time average transmission power,

P̄t({P (h)}, d), and the time average overhead power, P̄o, as

P̄t({P (h)}, d) :=
ps(
∫∞
0 P (h) dA(h) )T

piTi + pcTc + ps(To + T )

P̄o :=
piEi + pcEc + psEo

piTi + pcTc + ps(To + T )

Observe that P̄o does not depend on {P (h)} and d. Now, the network power constraint

can be viewed as

P̄t({P (h)}, d) ≤ P̄ − P̄o

where the right hand side is independent of {P (h)} or d. P̄t := P̄ − P̄o, is the time average

transmitter power constraint for the network.
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6.4.1 Optimization over {P (h)} for a fixed d

Consider the optimization problem (from (6.3))

max
{{P (h)}:P({P (h)})≤P̄}

ψ({P (h)}, d) (6.4)

The denominators of ΘT (·, ·) in (6.1) and of P in (6.2) are independent of d and the power

control {P (h)}. Thus, with d fixed, the optimization problem simplifies to maximizing∫∞
0 L(h) dA(h) or,

∫ ∞

0
log

(
1 +

P (h)hα

σ2dη

)
dA(h)

subject to the power constraint,

∫ ∞

0
P (h) dA(h) ≤ P̄t

′

where P̄t
′
is given by,

P̄t
′
:=

(piTi + pcTc + ps(To + T ))

psT
P̄t

P̄t
′
is the average transmit power constraint averaged only over the transmission periods

(successful contention slots).

Without a peak power constraint, this is a well-known problem whose optimal solution

has the water-pouring form (see [5]). The optimal power allocation function {P (h)} is

given by

P (h) =

(
1

λ
− dησ2

hα

)+

where λ is obtained from the power constraint equation

∫ ∞

λσ2dη

α

a(h)P (h)dh = P̄t
′

The optimal power allocation is a nonrandomized policy, where a node transmits with
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power P (h) every time the channel is in state h (whenever P (h) > 0), or leaves the

channel idle for h such that P (h) = 0.

6.4.2 Optimization over d

By defining ξ(h) := P (h)
dη , the problem of maximising the throughput over power controls,

for a fixed d, becomes

max
∫ ∞

0
log

(
1 +

αh

σ2
ξ(h)

)
a(h)dh

subject to

∫ ∞

0
ξ(h)a(h)dh ≤ P̄t

′

dη

Observe that P̄ ′
t and d influence the optimization problem only as

P̄ ′
t

dη . Denoting by Γ
(

P̄t
′

dη

)
the optimal value of this problem, the problem of optimisation over the hop-length, d,

now becomes

max
d
d× Γ

(
P̄t

′

dη

)
(6.5)

Theorem 6.4.1 In the problem defined by (6.5), the objective d×Γ
(

P̄t
′

dη

)
, when viewed as

a function of d, is continuously differentiable. Further, when the channel fading random

variable, H, has a finite mean (E(H) <∞), then

1. limd→0 d× Γ
(

P̄t
′

dη

)
= 0 and,

2. if in addition, η ≥ 2, 1
h2a

(
1
h

)
is continuously differentiable and P(H > h) = O

(
1
h2

)
for large h, then, limd→∞ d× Γ

(
P̄t

′

dη

)
= 0,

Proof: The proofs of continuous differentiability of d×Γ
(

P̄t
′

dη

)
, 1) and 2) are provided

in Appendix 6.6.2.

Remarks 6.4.1
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1. Under the conditions proposed in Theorem 6.4.1, it follows that d × Γ
(

P̄t
′

dη

)
is

bounded over d ∈ [0,∞) and achieves its maximum in d ∈ (0,∞).

2. When the objective function (6.5) is unbounded, the optimal solution occurs at

d = ∞ (follows from the continuity results).

3. We note that, in practice, η ≥ 2.

Let d0 be the far field reference distance (discussed in Section 6.2.1).

Theorem 6.4.2 The following hold for the problem in (6.5),

1. Without the constraint d > d0, the optimum hop distance dopt scales as (P̄t
′
)

1
η .

2. There is a value P̄t
′
min such that, for P̄t

′
> P̄t

′
min, dopt > d0, and the optimal solution

obeys the scaling shown in 1).

3. For P̄t
′
> P̄t

′
min, the optimum power control {P (h)} is of the water pouring form

and scales as P̄t
′
.

4. For P̄t
′
> P̄t

′
min, the optimal transport capacity scales as (P̄t

′
)

1
η .

Proof:

1. Let dopt be optimal for P̄t
′
> 0. We claim that, for x > 0, x

1
η dopt is optimal for the

power constraint xP̄t
′
. For suppose this was not so, it would mean that there exists

d > 0 such that

x 1
η dopt Γ

 xP̄t
′

(x
1
η dopt)η

 < d Γ

(
xP̄t

′

dη

)

or, equivalently,

(
dopt Γ

(
P̄t

′

dη
opt

))
< x−

1
η d Γ

 P̄t
′

(x−
1
η d)η



which contradicts the hypothesis that dopt is optimal for P̄t
′
.
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2. With the path loss model P
dη , we see that for d < d0, the received power is scaled

more than the transmitted power P , due to the factor 1
dη , and an dη

0 factor in α,

i.e., the model over-estimates the received power and the transport capacity. Hence,

the achievable transport capacity for d < d0 is definitely less than d× Γ
(

P̄t
′

dη

)
. The

result now follows from the scaling result in 1).

3. It follows from 1) that, if P̄t
′
scales by a factor x, then the optimum d scales by x

1
η ,

so that, at the optimum, P̄t
′

dη is unchanged. Hence the optimal {ξ(h)} is unchanged,

which means that {P (h)} must scale by x. The water pouring form is evident.

4. Again, by 1) and 2), if P̄t
′
scales by a factor x, then the optimum d scales by x

1
η , so

that, at the optimum, P̄t
′

dη is unchanged. Thus Γ
(

P̄t
′

dη

)
is unchanged, and the optimal

transport capacity scales as the optimum d, i.e., by the factor x
1
η .

Remarks 6.4.2

The above theorem yields the following observations for the fixed transmission time model.

1. As an illustration, with η = 3, in order to double the transport capacity, we need

to use 23 times the P̄t
′
. This would result in a considerable reduction in network

lifetime, assuming the same battery energy.

2. We observe that as the power constraint P̄t
′
scales, the optimal bit rate carried in

the network, Γ
(

P̄t
′

dη

)
, stays constant, but the optimal transport capacity increases

since the optimal hop length increases. Further, because of the way the optimal

power control and the optimal hop length scale together, the nodes transmit at the

same physical bit rate in each fading state; see the proof of Theorem 6.4.2 part 3).

6.4.3 Characterisation of the Optimal d

By the results in Theorem 6.4.1 we can conclude that the optimal solution of the maximi-

sation in (6.5) lies in the set of points for which the derivative of d×Γ
(

P̄t
′

dη

)
is zero. For a
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Figure 6.1: Plot of d × Γ
(

1
d3

)
(linear scale) vs. d (log scale) for a channel with two

fading states h1, h2. The fading gains are h1 = 100 and h2 = 0.5, with probabilities
ah1 = 0.01 = 1− ah2 . The function has 3 non-trivial stationary points.

fixed P̄t
′
, define π(d) := P̄t

′

dη . Differentiating d× Γ(π(d)), we obtain, (see Appendix 6.6.1)

∂

∂d
(d Γ(π(d)) = Γ(π(d))− ηπ(d)λ(π(d))

where λ(π) is the Lagrange multiplier for the optimisation problem that yields Γ(π(d)).

Since d appears only via π(d), we can view the right hand side as a function only of

π. We are interested in the zeros of the above expression. Clearly, π = 0 is a solution.

The solution π = 0 corresponds to the case d = ∞; However, we are interested only in

solutions of d in (0,∞), and hence, we seek positive solutions of π of

Γ(π)− ηπλ(π) = 0 (6.6)

Remarks 6.4.3 In Appendix 6.6.1, we consider a continuously distributed fading random

variable H with p.d.f. a(h). The analysis can be done for a discrete valued fading dis-

tribution as well, and we provide this analysis in Appendix 6.6.3. The following example

then illustrates that, in general, the function Γ(π) − ηπλ(π) = 0 can have multiple solu-

tions. Consider a fading distribution that takes two values: h1 = 100 and h2 = 0.5, with

probabilities ah1 = 0.01 = 1− ah2. Figure 6.1 plots d× Γ
(

1
d3

)
for the system with η = 3.

Notice that there are 3 stationary points other than the trivial solution d = ∞ (which is

not shown in the figure). Also, the maximising solution is not the first stationary point
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(the stationary point close to 0). If, on the other hand, ah1 = 0.001 = 1− ah2, we again

have 3 stationary points, but the optimal solution now is the first stationary point.

More generally, and still pursuing the discrete case, let H denote the set of fading

states when the fading random variable is discrete with a finite number of values; |H|

denotes the cardinality of H.

Theorem 6.4.3 There are at most 2|H|−1 stationary points of d Γ(π(d)) in 0 < d <∞.

Proof: See Appendix 6.6.3 for the related analysis and the proof.

We conclude from the above discussion that it is difficult to characterise the optimal

solution when there are multiple stationary points. Hence we seek conditions for a unique

positive stationary point, which must then be the maximising solution. In Appendix 6.6.1,

we have shown that the equation characterising the stationary points, Γ(π)−ηπλ(π) = 0,

can be rewritten as

∫ 1

0
(log(y)− η(y − 1))

λ2

y2
f

(
λ

y

)
dy = 0 (6.7)

for f(x) := a
(

σ2x
α

)
σ2

α
, the density of the random variable X := αH

σ2 . Notice that π does

not appear in this expression. The solution directly yields the Lagarange multiplier of

the throughput maximisation problem for the optimal value of hop length. The following

theorem guarantees the existence of at most one solution of (6.7).

Theorem 6.4.4 If for any λ1 > λ2 > 0,
f(λ2

y )
f(λ1

y )
is a strictly monotonic decreasing function

of y, then the objective function d×Γ
(

P̄t
′

dη

)
has at most one stationary point dopt, 0 < dopt <

∞.

Proof: The proof follows from Lemmas 6.6.1, and 6.6.2 in Appendix 6.6.1.

Corollary 6.4.1 If H has an exponential distribution and η ≥ 2, then the objective in the

optimisation problem of (6.5) has a unique stationary point dopt ∈ (0,∞), which achieves

the maximum.
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Figure 6.2: Plot of d× Γ
(

P̄t
′

dη

)
(linear scale) vs. π (= P̄t

′

dη ) (log scale) for a fading channel

(with exponential distribution). We consider 3 power levels (P̄t
′
, 4P̄t

′
and 9P̄t

′
) and η = 2.

The function has a unique optimum πopt(πopt ≈ 0.2) for all the 3 cases.

Proof: a(h) is of the form µe−µh. From Theorem 6.4.1, we see that limd→0 d ×

Γ
(

P̄t
′

dη

)
= 0 and limd→∞ d × Γ

(
P̄t

′

dη

)
= 0. And, the monotonicity hypothesis in Theo-

rem 6.4.4 holds for a(h).

Remarks 6.4.4 1. Hence, for η ≥ 2, for the Rayleigh fading model there exists a

unique stationary point which corresponds to the optimal operating point.

2. For P̄t
′
> P̄t

′
min, and for the conditions in Theorem 6.4.1 and 6.4.4, let πopt denote

the unique stationary point of (6.6). Then define Γ(πopt) = Θopt. It follows from

Theorem 6.4.2 that the optimal transport capacity takes the form
(

P̄t
′

πopt

) 1
η Θopt, where

Θopt depends on a(h) and the MAC parameters but not on P̄ (or P̄t).

3. Figure 6.2 numerically illustrates our results for the Rayleigh fading distribution and

η = 2. Scaling P̄t
′
by 4 scales the transport capacity from 2.3 to 4.6, i.e., by 4

1
η =

√
4

and similarly for scaling P̄t
′
by 9.

The uniqueness result guarantees that a distributed implementation of the optimization

problem, if it converges, shall converge to the unique stationary point, which is the optimal

solution.
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6.5 Summary

In this chapter we have studied a problem of optimal power control and self-organisation

in a single cell, dense, ad hoc multihop wireless network. The self-organisation is in terms

of the hop distance used when relaying packets between source-destination pairs.

We formulated the problem as one of maximising the transport capacity of the network

subject to an average power constraint. We showed that, for a fixed transmission time

scheme, there corresponds an intrinsic aggregate packet carrying capacity at which the

network operates at the optimal operating point, independent of the average power con-

straint. We also obtained the scaling law relating the optimal hop distance to the power

constraint, and hence relating the optimal transport capacity to the power constraint (see

Theorem 6.4.2). Because of the way the power control and the optimal hop length scale,

the optimal physical bit rate in each fading state is invariant with the power constraint.

In Theorem 6.4.4, we provide a characterisation of the optimal hop distance for cases in

which the fading density satisfies a certain monotonicity condition.

One motivation for our work is the optimal operation of sensor networks. If a sensor

network is supplied with external power, or if the network is not required to have a long

life-time, then the value of the power constraint, P̄ , can be large, and a long hop distance

will be used, yielding a large transport capacity. On the other hand, if the sensor network

runs on batteries and needs to have a long life-time then P̄ would be small, yielding a

small hop length. In either case, the optimal aggregate bit rate carried by the network

would be the same.

In [62], the authors study the problem of developing a distributed algorithm for nodes

to adapt themselves towards the optimal operating point. They first propose a distance

discretization technique in which the hop distance on the critical geometric graph is used

as a distance measure. Using the distance approximation, they then develop a distributed

algorithm aimed to maximize the transport capacity of the network in the sense of our

framework presented in this chapter.
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6.6 Appendix

6.6.1 Stationary Points of d× Γ(π(d))

Recall that we defined π(d) := P̄t
′

dη . Further, Γ(π(d)) was defined as

Γ(π(d)) := max
∫ ∞

0
log

(
1 +

αh

σ2

P (h)

dη

)
a(h)dh (6.8)

where the maximum is over all power controls {P (h)} satisfying the constraint

∫ ∞

0

P (h)

dη
a(h)dh ≤ π(d) (6.9)

For ease of notation, let us use the substitution x := αh
σ2 . Write ξ(x) := ξ(αh

σ2 ) = P (h)
dη

and f(x) := a
(

σ2x
α

)
σ2

α
. Note that f(·) is the probability density of the random variable

X := αH
σ2 . Then, equations (6.8) and (6.9) can be rewritten as

Γ(π) = max
∫ ∞

0
log(1 + xξ(x))f(x)dx

and ∫ ∞

0
ξ(x)f(x)dx ≤ π

This optimisation problem is one of maximising a convex functional of {ξ(x)}, subject to

a linear constraint. The optimal solution of the problem has water-pouring form, and the

optimal solution is given by,

ξ(x) =

(
1

λ(π)
− 1

x

)+

where λ(π) is obtained from

∫ ∞

λ(π)

(
1

λ(π)
− 1

x

)
f(x)dx = π

Further, the derivative of the optimum value Γ(π), w.r.t. π, i.e., ∂Γ(π)
∂π

= λ(π) (see

Aubin [27]).
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Let us now reintroduce the dependence on d, and consider the problem of maximizing

d× Γ(π(d)) over d. Differentiating d× Γ(π(d)) w.r.t. d, we get,

∂

∂d
(d Γ(π(d))) = Γ(π(d)) + d

∂

∂d
Γ(π(d))

= Γ(π(d)) + d
∂Γ

∂π
(π(d))× ∂π(d)

∂d

= Γ(π(d)) + d Γ′(π(d))× −ηP̄t
′

dη+1

= Γ(π(d))− ηπ(d)Γ′(π(d))

where Γ′(π) := ∂Γ(π)
∂π

. Substituting Γ′(π) = λ(π), we have,

∂

∂d
(dΓ(π(d))) = Γ(π(d))− ηπ(d)λ(π(d)) (6.10)

The stationary points of d × Γ(π(d)) are now obtained by equating the right hand side

of (6.10) to zero. Note that since d appears in this equation only as π(d), we need only

study the roots of the equation

Γ(π)− ηπλ(π) = 0 (6.11)

We now proceed to obtain a characterisation of the stationary points. Substituting

the optimal solution in the expression of Γ(π) and λ(π), and suppressing the argument π

in λ(π), we get,

Γ(π) =
∫ ∞

λ
log

(
x

λ

)
f(x)dx (6.12)

with λ being given by

π =
∫ ∞

λ

(
1

λ
− 1

x

)
f(x)dx (6.13)

Using the substitution z = 1
x
, l = 1

λ
, and defining g(z) = 1

z2f
(

1
z

)
, (6.12) and (6.13)

becomes,

Γ(π) =
∫ l

0
log

(
l

z

)
g(z)dz (6.14)
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with l (actually, l(π)) being given by

π =
∫ l

0
(l − z) g(z)dz (6.15)

We note that g(·) is the density of the random variable Z := 1
X

= σ2

αH
.

We will use the following definitions for convenience. For a function t(·) of the random

variable Z, define the operators El(·) and Gl(·) as

El(t(Z)) :=

∫ l
0 t(z)g(z)dz∫ l

0 g(z)dz

Gl(t(Z)) :=
∫ l

0
t(z)g(z)dz

Lemma 6.6.1 The roots of (6.11) are equivalent to the roots of the equation

ηGl

(
Z

l
− 1

)
= Gl

(
log

(
Z

l

))
(6.16)

with l then being given by (6.15).

Proof: Using the definitions of El(·) and Gl(·), (6.14) and (6.15) simplify to

Γ(π) = log(l)P(Z ≤ l)− Gl(log(Z)) (6.17)

π = lP(Z ≤ l)− Gl(Z) (6.18)

(6.18) provides the l (actually l(π)) to be substituted in (6.17). Substituting for Γ(π)

(from (6.17)), and for l (from (6.18)), into (6.11), dividing across by P(Z ≤ l), and using

the definition of El(·), we have,

log

(
π + Gl(Z)

P(Z ≤ l)

)
− El(log(Z))− ηπ

π + Gl(Z)
= 0

log

(
π

P(Z ≤ l)
+ El(Z)

)
− El(log(Z))− ηπ

π + Gl(Z)
= 0
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log

[(
π

Gl(Z)
+ 1

)
El(Z)

]
+ log

(
e−El(log(Z))

)
− ηπ

π + Gl(Z)
= 0

Rearranging terms, we get,

log

(
π + Gl(Z)

Gl(Z)

)
+ log

(
El(Z)e−El(log(Z))

)
− ηπ

π + Gl(Z)
= 0

Denote bl := log
(
El(Z)e−El(log(Z))

)
. Then, we have,

log

(
π + Gl(Z)

Gl(Z)

)
+ bl −

ηπ

π + Gl(Z)
= 0

From (6.18), we have
Gl(Z)

π + Gl(Z)
=

Gl(Z)

lP(Z ≤ l)
=

El(Z)

l

which, with the previous equation, yields

log

(
l

El(Z)

)
+ bl − η

(
1− El(Z)

l

)
= 0

Recall that l is actually l(π). We now find that π appears in the equation only as l(π).

Hence we can view this as an equation in the variable l(= 1
λ
). Rearranging terms, we get

− log

(
El(Z)

l

)
+ η

El(Z)

l
= −(bl − η)

Exponentiating both sides, and substituting back for bl, yields

El(Z)

l
e−η

El(Z)

l = El(Z)e−El(log(Z))e−η

On cancelling El(Z), and transposing terms, we next obtain

e
−η

(
El(Z)

l
−1

)
= e−El(log( Z

l ))
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or,

e−η(El( Z−l
l )) = e−El(log( Z

l ))

Taking log on both sides, we have,

ηEl

(
Z− l

l

)
= El

(
log

(
Z

l

))

In terms of Gl(·), this is equivalent to

ηGl

(
Z− l

l

)
= Gl

(
log

(
Z

l

))

which is the desired result.

We next address the question of a unique positive solution of (6.16). The following

lemma guarantees the existence of a unique positive solution, when f(·), the density of

αH
σ2 , satisfies a certain monotonicity condition.

Lemma 6.6.2 (6.16) has at most one positive solution if for any 0 < l1 < l2,
f

(
1

yl2

)
f

(
1

yl1

) is a

strictly monotone decreasing function of y.

Proof: Expanding Gl(·), (6.16) becomes,

η
∫ l

0

(
z

l
− 1

)
g(z)dz −

∫ 1
λ

0
log

(
z

l

)
g(z)dz = 0

Rewriting the equation in terms of f(·), we have,

∫ l

0

(
η
(
z

l
− 1

)
− log

(
z

l

))
1

z2
f
(

1

z

)
dz = 0

Using a substitution y = z
l

in the above equation, we get,

∫ 1

0
(log(y)− η(y − 1))

1

y2l2
f

(
1

yl

)
dy = 0 (6.19)

Define c(y) := (log(y) − η(y − 1)) 1
y2 and bl(y) := f

(
1
yl

)
. We are now interested in a
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positive l that solves ∫ 1

0
c(y)bl(y)dy = 0

Observe that limy→0 c(y) = −∞ and c(1) = 0. Further, there exists a unique y′ such that

c(y) ≤ 0 for all 0 ≤ y ≤ y′ and c(y) ≥ 0 for all y′ ≤ y ≤ 1. Since bl(y) ≥ 0 for all y and l,

we have c(y)bl(y) ≤ 0 for all 0 ≤ y ≤ y′ and c(y)bl(y) ≥ 0 for all y′ ≤ y ≤ 1. In particular,

∫ y′

0
c(y)bl(y)dy ≤ 0

∫ 1

y′
c(y)bl(y)dy ≥ 0

Consider l1, l2 such that 0 < l1 < l2. By hypothesis,
bl2

(y)

bl1
(y)

is a strictly monotone

decreasing function of y. Hence,
c(y)bl2

(y)

c(y)bl1
(y)

is also a strictly monotone decreasing function

of y. We then have,

∫ y′

0 |c(y)|bl2(y)dy∫ y′

0 |c(y)|bl1(y)dy
=

∫ y′

0 |c(y)| bl2
(y)

bl1
(y)
bl1(y)dy∫ y′

0 |c(y)|bl1(y)dy
>
bl2(y

′)

bl1(y
′)
,

And, ∫ 1
y′ c(y)bl2(y)dy∫ 1
y′ c(y)bl1(y)dy

=

∫ 1
y′ c(y)

bl2
(y)

bl1
(y)
bl1(y)dy∫ 1

y′ c(y)bl1(y)dy
<
bl2(y

′)

bl1(y
′)

Hence, ∫ y′

0 |c(y)|bl2(y)dy∫ y′

0 |c(y)|bl1(y)dy
>

∫ 1
y′ c(y)bl2(y)dy∫ 1
y′ c(y)bl1(y)dy

Interchanging terms, we get,

∫ y′

0 |c(y)|bl2(y)dy∫ 1
y′ c(y)bl2(y)dy

>

∫ y′

0 |c(y)|bl1(y)dy∫ 1
y′ c(y)bl1(y)dy

i.e., the ratio of the negative area of the integral to the positive area of the integral is a

strictly monotonic function of l. Hence, as l increases, the integral (6.19) can cross 0 at

most once, or, there exists at most one (non-trivial) solution for (6.19).
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6.6.2 Proof of Theorem 6.4.1

In this section, we will use the variables and equations from the discussion in Ap-

pendix 6.6.1.

Lemma 6.6.3 d× Γ
(

P̄t
′

dη

)
is continuously differentiable with respect to d.

Proof: Recall that π := P̄t
′

dη . Γ (π) and λ(π) (equations (6.12) and (6.13)) are

continuous function of π, and π itself is a continous function of d. Hence, from (6.10), we

see that d× Γ
(

P̄t
′

dη

)
is a continously differentiable function of d.

Lemma 6.6.4 If H (or equivalently X := Hα
σ2 ) has a finite mean, then limd→0 d ×

Γ
(

P̄t
′

dη

)
= 0.

Proof: Consider (6.15) ∫ l

0
(l − z)g(z)dz = π

where l is in fact l(π). Talking l outside the integral, we get,

l
∫ l

0

(
1− z

l

)
g(z)dz = π

Rewriting the integral as an expectation, we have, l Ez

(
1− Z

l

)+
= π or Ez

(
1− Z

l

)+
= π

l
.

Using Monotonce Convergence Theorem, we get,

lim
l→∞

Ez

(
1− Z

l

)+

↑ 1

or,

lim
l→∞

π

l
= 1

From (6.15), we see that, l→∞ as π →∞ (d→ 0). Hence, we have,

lim
π→∞

l(π)

π
= 1 (6.20)
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Now, consider the following limit, limd→0 d × Γ(π(d)), or equivalently, limπ→∞ π−
1
η Γ(π).

We know that,

π−
1
η Γ(π) ≥ 0

From (6.14), we have,

π−
1
η Γ(π) = π−

1
η Ez

(
− log

(
Z

l(π)

))+

Expanding the term inside the expectation, we have,

= π−
1
η Ez

(
log

(
1

Z

)
+ log

(
l(π)

π

)
+ log(π)

)+

Using the inequality log
(

1
z

)
≤ 1

z
(for z ≥ 0) in the above inequality, we get,

≤ π−
1
η Ez

(
1

Z
+ log

(
l(π)

π

)
+ log(π)

)+

Ez

(
1
Z

)
<∞ (follows from the definition Z := 1

X
and the hypothesis on EX), η > 0 and

from (6.20), we have the right hand side of the above expression → 0 as π → ∞, which

implies that limπ→∞ π−
1
η Γ(π) = 0, or

lim
d→0

d× Γ(π(d)) = 0

Lemma 6.6.5 Let η ≥ 2, 1
x2f

(
1
x

)
be continuously differentiable and limx→0

1
x2f

(
1
x

)
= 0.

Then ∂
∂d

(
d× Γ

(
P̄t

′

dη

))
≤ 0 as d→∞.

Proof: From (6.10) and the discussion in the proof of Lemma 6.6.1, we have,

∂

∂d
(d Γ(π(d))) = Γ(π(d))− ηπ(d)λ(π(d))

= κ
∫ l

0

(
η
(
z

l
− 1

)
− log

(
z

l

))
1

z2
f
(

1

z

)
dz
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where κ ≥ 0. Using a substitution y = z
l
, we get,

∂

∂d
(d Γ(π(d))) = κ

∫ 1

0
(η(y − 1)− log(y))

1

y2l2
f

(
1

yl

)
dy (6.21)

Define b(y) := η(y − 1)− log(y). For η > 1, there exists a y′ (depending on η) such that

b(y) ≥ 0 for 0 ≤ y ≤ y′ and b(y) ≤ 0 for y′ ≤ y ≤ 1, also b(1) = 0. Then, in (6.21), we see

that,

∫ y′

0
(η(y − 1)− log(y))

1

y2
f

(
1

yl

)
dy ≥ 0

∫ 1

y′
(η(y − 1)− log(y))

1

y2
f

(
1

yl

)
dy ≤ 0

Further, ∫ 1

0
(η(y − 1)− log(y))dy = 1− η

2

For η ≥ 2, the integral
∫ 1
0 b(y)dy is non-positive.

Let g(y) := 1
y2f

(
1
y

)
. Then g(y) is continuously differentiable function and limy→0 g(y) =

0 (by hypothesis). Define y0 as

y0 := sup{y : g(z) = 0, 0 ≤ z ≤ y}

If y0 > 0, then, we see that for l sufficiently small,

∫ y′

0
(η(y − 1)− log(y))

1

y2l2
f

(
1

yl

)
dy = 0

This is because for sufficiently small l, 1
y2f

(
1
yl

)
= 0 for 0 ≤ y ≤ y′. Hence, limd→∞

∂
∂d

(
d× Γ

(
P̄t

′

dη

))
≤

0.

If y0 = 0, we then have g′(y) ≥ 0 in a small neighbourhood of 0 (since g is continuously

differentiable by hypothesis). Hence, the function g(y) is a monotonic increasing function

in an ε neighbourhood of 0, i.e., g(0) < g(y) ≤ g(y′) ≤ g(ε) for all 0 < y < y′ < ε. Hence

for all sufficiently small l, 1
y2f( 1

yl
) is a monotone increasing function of y in [0, 1]. Hence,
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in (6.21), we have,

∫ y′

0
(η(y − 1)− log(y))

1

y2l2
f

(
1

yl

)
dy +

∫ 1

y′
(η(y − 1)− log(y))

1

y2l2
f

(
1

yl

)
dy ≤

(
1

y′l

)2

f

(
1

y′l

)∫ y′

0
(η(y − 1)− log(y))dy +

(
1

y′l

)2

f

(
1

y′l

)∫ 1

y′
(η(y − 1)− log(y))dy

=

(
1

y′l

)2

f

(
1

y′l

)(
1− η

2

)

The final expression is non-positive for η ≥ 2. Thus, ∂
∂d

(
d× Γ

(
P̄t

′

dη

))
≤ 0 as d→∞.

Lemma 6.6.6 Let η ≥ 2 and 1
x2f

(
1
x

)
be continuously differentiable. If for large x,

P(X > x) = O( 1
x2 ) (or equivalently for H = σ2X

α
), then limd→∞ d× Γ

(
P̄t

′

dη

)
= 0.

Proof: Let P(X > x) = O( 1
x2 ) for large x. i.e.,

∫ ∞

x
f(x)dx = O

(
1

x2

)

Using a substitution z = 1
x
, we have,

∫ z

0

1

z2
f
(

1

z

)
dz = O(z2)

Define g(z) := 1
z2f

(
1
z

)
. Then, ∫ z

0
g(z)dz = O(z2) (6.22)

Since g(z) ≥ 0 and continuous (by hypothesis), we have, g(0) = 0. Suppose not, then, we

have g(z) ≥ ε for all 0 ≤ z < δ for some δ. Then,

∫ z

0
g(z)dz ≥ εz

for all z ≤ δ, which is a contradiction to (6.22). Hence limz→0 g(z) = 0 or limz→0
1
z2f

(
1
z

)
=

0.
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We know from (6.10) that

∂

∂d
(d Γ(π(d))) = Γ(π(d))− ηπ(d)λ(π(d))

Now from Lemma 6.6.5, we see that, for η ≥ 2, and for d→∞,

Γ(π(d))− ηπ(d)λ(π(d)) ≤ 0

In other words,

Γ(π(d)) ≤ ηπ(d)λ(π(d))

Multiplying by d on both the sides, we have,

d Γ(π(d)) ≤ ηπ(d)λ(π(d))d = η
P̄t

′

dη−1
λ(π(d)) (6.23)

Since ∂
∂d

(
d Γ

(
P̄t

′

dη

))
≤ 0 as d → ∞, the function d Γ(π(d)) is monotonic decreasing for

d → ∞. Also d Γ(π(d)) ≥ 0. Suppose that, limd→∞ d Γ(π(d)) 6= 0, it implies that

limd→∞ d Γ(π(d)) ≥ ε > 0, which, using (6.23), implies that λ(π(d))
dη−1 ≥ ε or as d→∞

λ(π(d)) ≥ εdη−1 (6.24)

From (6.13), we have, ∫ ∞

λ

(
1

λ
− 1

x

)
f(x)dx =

P̄t
′

dη

ignoring the negative term, we have,

1

λ

∫ ∞

λ
f(x)dx ≥ P̄t

′

dη

or,

∫ ∞

λ
f(x)dx ≥ P̄t

′

dη
λ
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Substituting from (6.24), we have,

∫ ∞

λ
f(x)dx ≥ P̄t

′

dη
εdη−1 = P̄t

′
ε
1

d
(6.25)

But we have ∫ ∞

λ
f(x)dx = P(X > λ) = O

(
1

λ2

)
≤ O

(
1

d2η−2

)
(6.26)

where the last inequality follows from (6.24). For η ≥ 2, (6.25) and (6.26) yields a

contradiction. Hence, limd→∞ d× Γ
(

P̄t

dη

)
= 0.

6.6.3 Discrete Fading States

The optimization problem (6.4) for the discrete fading state case, simplifies to

max
∑
h∈H

ah ln

(
1 +

(
αh

σ2

)
P (h)

dη

)
subject to

∑
h∈H

ahP (h) ≤ P̄t
′

(6.27)

For notational convenience, let us index the set of fading states, H, in descending order

by the index i, 1 ≤ i ≤ |H|, i.e., h1 > h2 > h3 > · · ·. Further, denote

ahi
= ai, xi =

αhi

σ2
, and ξi =

P (hi)

dη

Also, denote

Π =
P̄t

′

dη

We will later recall that, for each power constraint P̄t
′
, Π is a function of d. Using this

new notation and change of variables, we obtain the problem

max
∑

i

ai ln (1 + xiξi)

subject to
∑

i

aiξi ≤ Π (6.28)

We have the maximisation of a concave mapping from R|H| to R subject to a linear
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constraint. The KKT conditions are necessary and sufficient, and the following “water

pouring” form of the optimal solution is well known. There exists λ(Π) > 0, such that,

for 1 ≤ i ≤ |H|,

ξi =

(
1

λ(Π)
− 1

xi

)+

with λ(Π) being given by

∑
{i: xi

λ(Π)
>1}

ai

(
1

λ(Π)
− 1

xi

)
= Π

Defining, for 1 ≤ k ≤ |H|,

pk = a1 + a2 + · · ·+ ak, and αk =
k∑

i=1

ai

xi

and Π0 = 0,Π|H| = ∞, the Lagrange multiplier, λ(Π), is given by

λ(Π) =

(
1

pk

(αk + Π)

)−1

(6.29)

for Πk−1 < Π ≤ Πk when 1 ≤ k ≤ |H| − 1, and for Π|H|−1 < Π <∞ when k = |H|. Here

the break-points Πk, 1 ≤ k ≤ |H| − 1, are obtained by equating the values of λ(Π) on

either sides of the break-points, and are expressed as

Πk =

 αk+1

pk+1
− αk

pk

1
pk
− 1

pk+1


The denominator of this expression is clearly > 0, and a little algebra shows that, since

xk+1 > xi, 1 ≤ i ≤ k, the numerator is also > 0.

For each Π, let us denote the optimal value of the problem defined by (6.28) by Γ(Π).

We infer that
∂Γ

∂Π
= λ(Π)

Now, fixing the power constraint P̄t
′
, and reintroducing the dependence on d, we recall



Chapter 6. Power Control and Routing for a Single Cell, Dense Wireless Network 145

that Π(d) = P̄t
′

dη , and hence conclude that

∂Γ

∂d
= λ(Π(d))

(
−ηP̄t

′

dη+1

)

Define d0 = ∞, d|H| = 0, and, for 1 ≤ k ≤ |H| − 1, define

dη
k = P̄t

′ ·

 1
pk
− 1

pk+1

αk+1

pk+1
− αk

pk


Note that 0 = d|H| < d|H|−1 < · · · < d2 < d1 < d0 = ∞. Now, substituting for λ(Π(d))

from (6.29) and integrating, yields the following result

Theorem 6.6.1 For given P̄t
′
, the optimal value Γ(d) of the problem defined by (6.27)

has the following characterisation.

1. The derivative of Γ(d) w.r.t. d is given by

∂Γ

∂d
=

1

d

(
−ηpkP̄t

′

αkdη + P̄t
′

)
(6.30)

for dk ≤ d < dk−1 when 1 ≤ k ≤ |H| − 1, and for 0 < d < d|H|−1 when k = |H|.

2. ∂Γ
∂d

is a negative, continuous and increasing function of d. In particular Γ(d) is a

decreasing, and convex function of d.

3. The function Γ(d) is given by

Γ(d) = pk ln

(
αk +

P̄t
′

dη

)
γk (6.31)

for dk ≤ d < dk−1 when 1 ≤ k ≤ |H|− 1, and for 0 < d < d|H|−1 when k = |H|, with

the constants of integration γk being given as follows.

γ1 =
1

α1

=
x1

a1
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and, for 2 ≤ k ≤ H, γk is obtained recursively as

γk =

((
αk−1 + P̄t

′

dη
k−1

)
γk−1

)( pk−1
pk

)
αk + P̄t

′

dη
k−1

Proof: (6.31) is obtained by integrating the derivative in (6.30) over each segment of

its definition. The integration constants γk are obtained by equating Γ(d) on either sides

of the break-points of the argument d.

Optimisation over d

Using Theorem 6.6.1, we conclude that we need to look at the stationary points of Γ(d)d.

To this end, consider the solutions of

Γ(d) + d Γ′(d) = 0

Reintroducing the variable Π = P̄t
′

dη , and canceling pk, we need the solutions of

ln
(
1 +

Π

αk

)
αkγk −

ηΠ

αk + Π
= 0

for Πk−1 < Π ≤ Πk when 1 ≤ k ≤ |H| − 1, and for Π|H|−1 < Π <∞ when k = |H|, with

the break-points Πk, 1 ≤ k ≤ |H|, as given earlier. Let us write Π
αk+Π

= 1− 1
1+ Π

αk

, define

bk = lnαkγk (observe that b1 = 0), and, for given k, use the new variable

y =
1

1 + Π
αk

Note that, for 0 < Π <∞, 1 > y > 0. Define δk = 1

1+
Πk
αk

. Then we seek the solutions of

ln
1

y
+ bk − η (1− y) = 0



Chapter 6. Power Control and Routing for a Single Cell, Dense Wireless Network 147

1/η

−   yη
y e

e
b − ηk

10 y

e−η

Figure 6.3: The stationary points of Γ(d)d lie among the intersections of the curve ye−ηy

and lines ebk−η, 1 ≤ k ≤ |H|, in the interval 0 < y < 1. Here the plot is drawn for η = 3.

for δk ≤ y < δk−1, for each k, 1 ≤ k ≤ |H|; note that δ0 = 1, and δ|H| = 0. The equations

can be written more simply as

ebk−η = ye−ηy,

and are depicted in Figure 6.3. At this point we can conclude the following

Theorem 6.6.2 1. limd→0 Γ(d)d = 0

2. There are at most 2|H| − 1 stationary points of Γ(d)d in 0 < d <∞.

Proof: 2) follows from the arguments just before the theorem statement, since each

line e(bk−η) , for 2 ≤ k ≤ |H|, has at most two intersections with ye−ηy, in 0 < y < 1, and

e−η has only one such intersection.

6.6.4 Fixed Transmission Time vs Fixed Packet Size

In this section, we will formally establish that fixed transmission time schemes are more

throughput efficient compared to fixed packet size schemes, for a given average power

constraint. We will prove this result in a general framework, without explicitly modelling

the underlying MAC, the power control schemes used or the channel fading distribution.

Data Transmission Model: In a fixed transmission time scheme, all data transmissions

(with positive rate) are of a fixed amount of time T , independent of the channel state

h and the power used. Earlier, in our work (see Section 6.2.2), we assumed that, when

the channel fade is poor (and hence P (h) = 0), the channel is left idle for the next T

seconds. Further, the optimal power control policy for such a system was found to be

a non-randomized policy, where a node transmits with constant power P (h) every time
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the channel is in state h (see Section 6.4.1). Here, we will allow the possibility of the

channel being relinquished when bad with a fixed time overhead ≤ T . We consider a

spatio-temporal fading process with successive transmitter-receiver pairs being selected

by a distributed multiaccess contention mechanism. Hence, relinquishing the channel

might improve throughput, as successive fade levels might have little correlation. The

optimal policy for such a MAC could be a randomized policy. Hence, we will allow a

randomized power control, i.e., for a channel state h, the transmitter chooses a power

Ph according to some distribution. In a fixed packet size scheme, all data transmissions

(with positive rate) carry a fixed amount of data L independent of the channel state h

and the power control used. Here as well, we will allow the possibility of a randomized

power control and the possibility of relinquishing the channel with a fixed time overhead

(when the channel fade is poor).

Optimality Criterion: The throughput optimality of a data transmission scheme is

established either by comparing the energy required to send a certain amount of bits in a

given time or by comparing the amount of bits sent with a given amount of energy in a

given time. (We will discuss more about this optimality criterion in Remark 6.6.1). We

study a data transmission scheme by considering two data transmissions of positive rates,

in some arbitrary channel states with gains h1 and h2 and with applied powers Ph1 and

Ph2 . We do not make any assumption on the probabilities of h1 and h2, and about the

power control policy which yields the powers Ph1 and Ph2 .

For a given power control scheme (h, Ph), we will then assume that the transmis-

sion rate given by Shannon’s formula is achieved over the transmission burst; i.e., the

transmission rate is given by

Ch = W log(1 + hPh)

We have absorbed the factor α
σ2dη in to the term h (since d is fixed in this discussion).

Hence, the time durations taken to transmit the L bits during the channel states h1 and h2

(with the powers Ph1 and Ph2) are given by Th1 := L
W log(1+h1Ph1

)
and Th2 := L

W log(1+h2Ph2
)
.
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Then, the total time occupied by these two transmissions is

TP =
L

W log(1 + h1Ph1)
+

L

W log(1 + h2Ph2)
(6.32)

spending an amount of energy equal to

EP =
LPh1

W log(1 + h1Ph1)
+

LPh2

W log(1 + h2Ph2)
(6.33)

Define LP := 2× L as the amount of bits sent in time TP using an energy EP in channel

states h1 and h2.

Lemma 6.6.7 Let h1 > h2. For a fixed packet size scheme, if Ph1 and Ph2 are applied

powers during channel states h1 and h2, then having h1Ph1 ≥ h2Ph2 is throughput optimal.

Proof: Suppose that h1Ph1 < h2Ph2 . Then,

log(1 + h1Ph1) < log(1 + h2Ph2)

Find power controls P̃h1 and P̃h2 such that

log(1 + h1Ph1) = log(1 + h2P̃h2) (6.34)

log(1 + h2Ph2) = log(1 + h1P̃h1) (6.35)

or, equivalently,

h1Ph1 = h2P̃h2 (6.36)

h2Ph2 = h1P̃h1 (6.37)

With the power control scheme (h1, P̃h1), (h2, P̃h2), the total time occupied in the trans-

missions of 2× L bits during the channel states h1 and h2 is,

TP̃ =
L

W log(1 + h1P̃h1)
+

L

W log(1 + h2P̃h2)
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= TP

(from (6.34) and (6.35)). Now, consider the energy spent to transmit these 2 × L bits,

i.e.,

EP̃ =
LP̃h1

W log(1 + h1P̃h1)
+

LP̃h2

W log(1 + h2P̃h2)

Substituting for P̃h1 and P̃h2 from (6.36) and (6.37), we have,

EP̃ =
1

h1

Lh2Ph2

W log(1 + h2Ph2)
+

1

h2

Lh1Ph1

W log(1 + h1Ph1)

Rearranging the terms, we have,

EP̃ =
1

h2

Lh1Ph1

W log(1 + h1Ph1)
+

1

h1

Lh2Ph2

W log(1 + h2Ph2)

<
1

h1

Lh1Ph1

W log(1 + h1Ph1)
+

1

h2

Lh2Ph2

W log(1 + h2Ph2)

=
LPh1

W log(1 + h1Ph1)
+

LPh2

W log(1 + h2Ph2)

= EP

where the inequality follows from the fact that

Lh1Ph1

W log(1 + h1Ph1)

(
1

h2

− 1

h1

)
<

Lh2Ph2

W log(1 + h2Ph2)

(
1

h2

− 1

h1

)

since h1 > h2 and h1Ph1 < h2Ph2 (by assumption) and the fact that x
log(1+x)

is strictly

monotone increasing.

It follows that an optimal power control must have h1Ph1 ≥ h2Ph2 .

Remark: From Lemma 6.6.7, we see that, when h1 > h2, Ch1 := W log(1 + h1Ph1) ≥

W log(1 + h2Ph2) =: Ch2 , or equivalently, Th1 ≤ Th2 .
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We will now provide a comparison of the fixed packet scheme with a fixed transmis-

sion time scheme and show the optimality of the fixed transmission time schemes. The

comparison is done under the following assumption.

• The channel has the same marginal fading distribution, whenever sampled by a

transmitter, for either schemes. This is a reasonable assumption as we consider

spatio-temporal fading, with successive transmissions from possibly different source-

destination pairs chosen by the distributed multiaccess contention scheme.

For the fixed packet size scheme, LP := 2×L bits were transmitted in TP (= Th1+Th2) time

(see (6.32)) with an amount of energy equal to EP (see (6.33)), in two channel samples h1

and h2. A reasonable comparison would be to find the throughput of a fixed transmission

time scheme for a total duration of TP seconds involving two data transmissions with

channel samples h1 and h2 of equal duration T = TP

2
and a total energy of EP . We will

assume that Ph1 and Ph2 , the power used for the fixed packet size scheme are such that

Th1 ≤ Th2 (see Lemma 6.6.7). Hence, we have Th1 ≤ T ≤ Th2 , or, the fixed transmission

time scheme spends relatively more time on a better channel. Clearly, its throughput is

better than the fixed packet size scheme for the same energy constraint, as seen below.

Let Pth1
and Pth2

be the optimal power control for the fixed transmission time strategy

such that

ET := Pth1
T + Pth2

T = Ph1Th1 + Ph2Th2 = EP

We have,

LP = 2L = Th1W log(1 + h1Ph1) + Th2W log(1 + h2Ph2)

Expanding the left hand side, we have,

2L = Th1W log(1 + h1Ph1) + (Th2 − T )W log(1 + h2Ph2)

+ TW log(1 + h2Ph2)
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Using h1 > h2, we get,

2L ≤ Th1 log(1 + h1Ph1) + (Th2 − T ) log(1 + h1Ph2)

+ T log(1 + h2Ph2)

≤ T log(1 + h1Pth1
) + T log(1 + h2Pth2

)

=: LT

where the last inequality follows from the fact that (h1, Pth1
) and (h2, Pth2

) is the optimal

power control scheme for the fixed transmission time scheme with time TP (= 2× T ) and

energy ET (= EP ).

Remarks 6.6.1 For L(t) defined as the amount of bits sent up to time t, and E(t) defined

as the total energy spent up to time t, the average throughput (Θ) and the average power

(P̄ ) of the system are, in general, defined as

Θ := lim inf
t→∞

L(t)

t

P̄ := lim sup
t→∞

E(t)

t

Under additional assumptions on the fading process and the power control scheme used,

the expressions are simplified as an ensemble average (for example, see (6.1) and (6.2)

for a fixed transmission time scheme). In this section, the optimality of the schemes

have been shown directly, by comparing the amount of bits transmitted for a particular

sample of channel for a given amount of time and energy, or by comparing the amount

of energy used to transmit a given amount of bits for a particular sample of channel in

a given amount of time. For example, the argument provided here directly translates to

an argument with the ensemble average for the discrete fading case. This approach is not

only straightforward, but also is very general.



Chapter 7

Network Coding and Power Control

for a Two Link Wireless Network

7.1 Introduction

In the previous chapters, we have considered a store-and-forward strategy to route packets

between nodes. It is now well known that (see [57]) (network) coding enhances through-

put and delay characteristics of networks (including wired networks) as compared to the

traditional store-and-forward routing strategy. Motivated by the results in [57] and in

the literature, in this chapter, we study a power minimization problem using a network

coding strategy for a simple two link wireless network.

Consider a two link, slotted wireless network with bidirectional traffic as shown in

Figure 7.1. Packets flow from Node 1 to Node 2 and from Node 2 to Node 1 and are

routed via the central Node 0. Data packets from either route are queued in Node 0

before transmission. We assume that Node 0 has sufficient buffer space and the packets

are queued until transmission, i.e., there are no packet losses due to buffer overflow in

1 20

Figure 7.1: A two link wireless network with bidirectional traffic between nodes 1 and
2. Data packets from Node 1 to Node 2 and from Node 2 to Node 1 are routed via the
central Node 0.
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Figure 7.2: Node 0 queues packets from both the routes in its buffer and can network
code the packets before transmission. This permits three different transmission strategies
for Node 0 in a slot; data transmission to Node 1 (0 → 1), data transmission to Node 2
(0 → 2) or (network coded packet) broadcast to Nodes 1 and 2 (0 → 1, 2).

the network. We make the following assumptions about radio transmission and reception.

Nodes 1 and 2 can transmit a packet to Node 0, though not simultaneously. Node 0 can

transmit a (unicast) packet to either Node 1 or to Node 2. We also permit the central

node to “network code” packets belonging to the two routes (queued in its buffer) and

broadcast a coded packet containing data for either of the nodes, on both the links, in a

slot (see Figure 7.2). This simple strategy (network coding and broadcasting) is known to

improve throughput as well as reduce the average power requirement.

The idea of network coding and broadcasting can be easily understood using the follow-

ing example. Let Node 1 and Node 2 have packets a and b to be sent to their destinations,

Node 2 and 1 respectively. We will assume that the capacity of the wireless channel is 1

packet per slot on every link. Consider the simple store-and-forward scheduling strategy.

In the first slot, packet a is transmitted from Node 1 to Node 0; in the second slot, packet

b is transmitted from Node 2 to Node 0; in the third slot, packet a is transmitted from

Node 0 to Node 2 and in the fourth slot, packet b is transmitted from Node 0 to Node 1.

The store-and-forward strategy requires four slots to communicate two packets to their

destinations. Observe that in the third slot, Node 0 has both the packets a and b in its

buffer. Suppose that the central node XORs packets a and b and broadcasts a coded

packet a ⊕ b during the third slot, intended for both nodes. Also, suppose that Nodes 1

and 2 maintain a copy of packets a and b originated from them. Assuming that nodes 1

and 2 can both decode the network coded broadcast packet a ⊕ b from Node 0, Node 1
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Figure 7.3: Capacity region of a two link wireless network (with 1 packet per slot wireless
links and) with bidirectional traffic. Observe that network coding enhances the capacity
region as compared to store-and-forward strategy.

(resp., 2) can then decode its packets of interest i.e., b (a) by XORing the received packet

a⊕ b with the packet a (b). Clearly, the network coding and broadcasting strategy saves

1 slot, thereby improving the throughput of the system. Figure 7.3 shows the capacity

region of the example network with and without network coding. Observe that network

coding enhances the capacity region of the network as compared to the store-and-forward

strategy. In this work, we assume that the central node is capable of network coding, and

further, the terminal nodes store their transmitted packets sufficiently long for them to

decode any network coded packet.

In this chapter, we apply the idea of network coding and broadcasting strategy for

wireless channels with fading. We assume that the channel state evolves according to a

stationary Markov process and the scheduler has complete information about the channel

fade gains at the beginning of every slot. We make the further assumption that nodes 1

and 2 communicate data packets to Node 0 through an independent channel, and study

only the downlink problem at the central Node 0 (For example, 1 → 0 and 2 → 0 could be

the uplink of a frequency division duplex cellular system). The packet arrivals at Node 0

(from Nodes 1 and 2) are modeled as stationary Markov processes. Now, in a slot, for any

channel fade gain (h1, h2), where h1 and h2 are the instantaneous gains on links 0 → 1

and 0 → 2 respectively (letting h1 > h2), the scheduler is confronted with the choice
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of transmitting at a higher rate (a function of the channel fade gain h1) to user 1 or to

network code and transmit at a lower rate (restricted by the fading gain h2), decodable

by both the users. In this work, we study this tradeoff and obtain the optimal power

allocation and coding strategy that minimizes the average power required to stabilize the

arrival processes.

Situations such as these could arise in downlink OFDMA wireless schedulers if two

mobiles on an OFDMA carrier wish to communicate with each other. Suppose that users

1 and 2 are involved in a bidirectional communication via base-station 0. The uplink and

downlink traffic in OFDMA MAC are scheduled in different time slots and the optimiza-

tion problem for the uplink/downlink traffic are handled separately. In such a scenario,

the base station 0 can optimize the downlink resources by network coding packets of users

1 and 2 queued in its buffer. Gaming and other point-to-point applications contribute to

peer-to-peer intracell traffic, and our work aims to study the resource allocation problem

in such scenarios.

7.1.1 Literature Survey

The seminal work in [57] has sparked significant interest in network coding, both for wired

and wireless networks. While there is considerable literature on network coding for single

source multicast networks (see references in [3]), little is known about multisource net-

works, especially with unicast traffic. Also, most work on unicast traffic restrict network

coding to simple models, like bidirectional traffic on links or restricted activation sets per

slot ([74], [51], [58]).

In [51], the authors propose a scheduling strategy for general wireless networks by

restricting network coding to bidirectional traffic, i.e., network coding is used along those

linear paths that carry traffic on either direction. [51] extended the backpressure technique

proposed in [37] and [42] (for networks without network coding), and achieved a Ω
(

1
v

)
tradeoff for delay for an excess average power of O(v). In our work, we study a two-link

wireless network with bidirectional traffic. We focus on the optimal power control and

network coding policy that minimizes the average power required to stabilize the queues.
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This work can be considered as an extension to the work of Goldsmith and Varaiya [5]

for a single point-to-point fading wireless channel. Further, we extend the power-delay

tradeoff results for wireless networks, studied in [55], [47] and [51], and obtain the optimal

tradeoff for the network coding scenario.

7.1.2 Outline of the Chapter

In Section 7.2, we discuss the network model, transmission strategies and the transmission

rate region. In Section 7.3, we study the capacity region of the network and the minimum

average power required to support the given arrival rate. We discuss briefly, the power

benefits of network coding in Section 7.3.3. In Section 7.4, we study the power-delay

tradeoff achievable with network coding. Finally, we summarize the results in Section 7.5.

7.2 Network Model

We consider a two link slotted wireless network with bidirectional traffic. We assume

that the nodes are synchronized and the slots are of a fixed length, T seconds. Packets

flow from Node 1 to Node 2 and from Node 2 to Node 1 and are routed via the central

Node 0. In this work, we assume that the packets from Node 1 and Node 2 reach Node 0

through a separate channel, and we focus only on the scheduling problem at the central

node 0. Packet arrivals into the buffer at Node 0 (for Nodes 1 and 2) are modeled as

stationary Markov processes. Let A(t) := (A1(t), A2(t)) represent the vector of data

arrivals to the queues at Node 0, corresponding to nodes 1 and 2, during the slot t. We

define the average arrival rates as (λ1, λ2) := (E[A1(t)],E[A2(t)]). The packets are queued

in an infinite buffer at Node 0 until transmission. Let H(t) := (H1(t), H2(t)) represent

the channel state vector corresponding to links 0 → 1 and 0 → 2 (respectively) during

the slot t. The channel state corresponds to the power gain due to fading over the links,

and we assume that the power gains remain constant during a slot. Further, we assume

that the number of channel states is finite. Denoting the set of channel states by H, we

then define π(h) as the probability of the channel being in state h = (h1, h2).
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Figure 7.4: The scheduling problem at the central Node 0. (A1(t), A2(t)) represents
the vector of data arrivals (for nodes 1 and 2 respectively) to the queues at Node 0 and
(Q1(t), Q2(t)) corresponds to their queue lengths. (H1(t), H2(t)) is the channel power gain
in the links 0 → 1 and 0 → 2 respectively, and (R1(t), R2(t)) is the alloted transmission
rate (over the links) during the slot t. The queue dynamics for the system is given by, for
i = 1, 2, Qi(t+ 1) = (Qi(t)−Ri(t))

+ + Ai(t+ 1).

Let Q(t) denote the vector of data queued in the buffer of the source Node 0 at the

beginning of slot t. For R(t), the transmission rate vector used in the slot t, the queue

dynamics of the network is given by, for i = 1, 2,

Qi(t+ 1) = max {Qi(t)−Ri(t), 0}+ Ai(t+ 1)

The transmission rate vector, R(t) = (R1(t), R2(t)), depends on the power gain H(t), the

power allocated to the links and the transmission strategy employed. We do not restrict

Ri(t) (and hence Qi(t)) to take integer values. In the remainder of this section, we

will discuss two example transmission strategies for the bidirectional network employing

different coding strategies.

7.2.1 Transmission Strategies and Rate Vectors

The feasible rate vector depends on the scheduling strategy and the coding strategy

employed. Let (h1, h2) be the channel fade gain in a slot, and let h1 ≥ h2. Define

C(h, p;σ2) as the maximum bit rate achievable over a single link with channel power
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gain h, transmit power p and noise power σ2. In general, we expect C(h, p;σ2) to be a

concave non-decreasing function in p and non-decreasing in h. For e.g., C(h, p;σ2) could

be log
(
1 + hp

σ2

)
or
√

hp
σ2 . In practice, we can choose C(h, p;σ2) such that, the bit error rate

is small and we ignore any residual errors as we assume that the application can tolerate

such error rates.

The transmitter at node 0 now has the following three simple transmission options in

a slot.

• Schedule link 0 → 1 : The scheduler allots power p1 and transmits C(h1, p1;σ
2) ·T

bits over link 0 → 1 in the slot, i.e., (r1, r2) = (C(h1, p1;σ
2), 0).

• Schedule link 0 → 2 : The scheduler allots power p2 and transmits C(h2, p2;σ
2) ·T

bits over link 0 → 2 in the slot, i.e., (r1, r2) = (0, C(h2, p2;σ
2)).

• XOR packets and broadcast over links 0 → 1 and 0 → 2 : The scheduler

XORs a packet from each of the two flows, and broadcasts the coded packet with a

common power pnc in the slot. We will assume that C(min(h1, h2), pnc;σ
2) · T bits

can be transmitted over either link in the slot, i.e.,

(r1, r2) = (C(min(h1, h2), pnc;σ
2), C(min(h1, h2), pnc;σ

2))

We have used min(h1, h2) as the worst case power gain for the broadcast packet,

to ensure that the coded packet is received correctly over both the links. Thus, in

this scheme, for a network coded packet, the minimum fading gain determines the

maximum bit rate achievable.

Figure 7.5 shows the transmission rate vectors (bold continuous lines) associated with

the simple transmission strategies discussed above. Also for h1 ≥ h2, the network coding

strategy dominates the second strategy, schedule link 0 → 2, i.e., the rate vectors achiev-

able using the network coding strategy encompasses the rate vectors achievable using the

strategy, schedule link 0 → 2.

Alternatively, the scheduler can employ a coding strategy similar to that used in

broadcast channels ([65]). The transmitter codes data for the link 0 → 1 with power
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Figure 7.5: Transmission rate region for the simple transmission scheme, and the broad-
cast and coding scheme. We have fixed the channel state as (h1, h2) (with h1 > h2) and
we have assumed a transmit power p, p ∈ [0, P ]. The dark continuous lines correspond to
the rate vector with the simple transmission scheme, i.e., (C(h1, p;σ

2), 0), (0, C(h2, p;σ
2))

and (C(min(h1, h2), p;σ
2), C(min(h1, h2), p;σ

2)) for p ∈ [0, P ]. The dark dashed line
correspond to the rate vector with the broadcast strategy, i.e., (C(h2, p2;h2p1 + σ2) +
C(h1, p1;σ

2), C(h2, p2;h2p1 + σ2)) for p1 ∈ [0, P ] and p2 = P − p1. The shaded region is
the rate region and is achieved by time sharing of the rate vectors.

p1 (over a channel with power gain h1) and common data with power pnc (restricted by

channel gain h2) decodable by both the users. We note here that, since h1 ≥ h2, the data

coded with pnc is decodable at User 1 as well. User 2 can now decode the common data

at a rate r2 = C(h2, pnc;h2p1 + σ2); The power allocated for transmission to node 1, i.e.,

p1, is perceived as noise by user 2. User 1, seeing a better channel (h1), can also decode

the common data. Further, it can decode the data aimed to it at a rate C(h1, p1;σ
2) by

canceling the interference due to the common data transmitted with power pnc (see [65]).

Effectively, user 1 sees a combined rate r1 = C(h2, pnc;h2p1+σ
2)+C(h1, p1;σ

2). Figure 7.5

shows the transmission rate vectors achievable with the broadcast strategy (bold dashed

lines). While the broadcast strategy increases the system complexity, the feasible rate

region enlarges as well. Observe that the broadcast strategy improves the transmission

rate region as compared with the simple transmission schemes discussed earlier (shaded

region within the dashed bold lines).
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7.3 Capacity Region

In this section, we will define the capacity region of the wireless network following the

framework developed in [42] and [44]. Define a power allocation policy in a slot, p, as

p = (p1, p2, pnc), where p1, p2 and pnc are the powers allotted, respectively, to data for

users 1, 2, and the network coded data (common data). For every transmission strategy

employed, we assume that, p ∈ Π, a compact set, which defines the set of admissible power

vectors in a slot. For example, Π could possibly define a maximum power constraint over

the slot, i.e., ΠPmax := {p : p1 + p2 + pnc ≤ Pmax}. The feasible rate vector is now

denoted by (r1, r2) = r(h,p), for h ∈ H and p ∈ Π, where r(h,p) could correspond to

any transmission and coding strategy (similar to those discussed in Section 7.2.1).

Fixing a transmission scheme (e.g., one of the two strategies in Section 7.2.1), define

µ(h), the rate region for channel state h, as the convex hull of the feasible rate vectors

(r1, r2) in a slot, i.e.,

µ(h) := ConvexHull{r(h,p) : p ∈ Π}

=

{
(r1, r2) : (r1, r2) ≤

∑
i

αir(h,pi) for pi ∈ Π and
∑

i

αi ≤ 1

}

r(h,p) for p ∈ Π defines the set of all rate vectors available in a slot, and µ(h) defines the

set of all rate vectors achievable over a time sharing policy in a slot for a given channel

state h. In Figure 7.5, the three bold lines correspond to the rate vectors r(h,p) and

the shaded region corresponds to the rate region µ(h). We will now use the definition of

µ(h) and define the capacity region of the wireless network, as the set of all data rates

λ = (λ1, λ2), for which some power allocation and coding strategy exists to stabilize the

queues. We begin with introducing the notion of stability.

Definition 7.3.1 (from [42]) Define ei(M) as,

ei(M) := lim sup
t→∞

1

t

t∑
τ=1

Pr(Qi(τ) > M)

The queues at node 0 are defined to be stable if ei(M) → 0 as M →∞ for all i = 1, 2.
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The capacity region of the wireless network with a fading channel is now defined as follows.

Definition 7.3.2 (from [42]) For an ergodic channel process H(t) with marginal p.m.f.

π(h),h ∈ H, and a compact admissible power set Π, define the rate region Γ by

Γ :=
∑
h∈H

π(h) µ(h)

The following theorem relates the stability of any arrival rate vector λ in terms of the

capacity region Γ.

Theorem 7.3.1 (from [42]) A necessary condition for stability is λ ∈ Γ. Further,

when arrivals and channel state variations are Markov modulated on a finite state space,

a sufficient condition for stability is that λ is strictly in the interior to Γ.

7.3.1 Minimizing the Average Power Requirement

In the previous section, we defined the rate region and the capacity region of the bidirec-

tional wireless network shown in Figure 7.4. We will now obtain the minimum average

power required to support a given rate vector λ. Let g(p) be a nonnegative and contin-

uous function of the power vector p (e.g., g(p) could be p1 + p2 + pnc). Now, define the

average power cost as,

gavg := lim
t→∞

1

t

t∑
τ=1

E {g(p(τ))}

where E {g(p(t))} is the expected power cost in slot t. It was shown in [44] that when

g(p) and r(h,p) are continuous in the power vector p, then the minimum average power

cost g∗avg required to support an arrival rate λ = (λ1, λ2) which is stabilizable, is given by

the solution to the following optimization problem.

Minimize : gavg =
∑
h∈H

π(h)
L∑

k=1

γh
k g(p

h
k ) (7.1)

subject to :
∑
h∈H

π(h)
L∑

k=1

γh
k r(h,ph

k ) ≥ λ
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where ∀h ∈ H, ph
k ∈ Π, γh

k ∈ R, γh
k ≥ 0,

L∑
k=1

γh
k = 1

This formulation is understood as follows. The variables in the above optimization prob-

lem are γh
k and phk , for all h ∈ H and 1 ≤ k ≤ L. For a given channel state h, γh

k , 1 ≤ k ≤ L

correspond to a set of auxiliary variables used to achieve every point in the rate region

µ(h). A power phk is allotted for a fraction γh
k of slots during which the channel gain is

h. The average power allocated for the channel state h is then given by
∑L

k=1 γ
h
k g(p

h
k )

and the average rate (vector) achieved for the channel state h is
∑L

k=1 γ
h
k r(h,ph

k ). From

the Caratheodory theorem for convex hulls, we know that we need only a finite num-

ber of auxiliary variables per channel state h to achieve every rate vector in µ(h) (i.e.,

L < ∞). In our examples, we have L = 3 for the simple transmission strategies and for

the broadcast strategy.

7.3.2 Optimal Power Allocation

We will now obtain the power allocation scheme that minimizes the average power for a

given arrival rate λ = (λ1, λ2). The rate constraints in the optimization problem can be

expanded as,

∑
h∈H

π(h)
L∑

k=1

γh
k r1(h,p

h
k ) ≥ λ1 (7.2)

∑
h∈H

π(h)
L∑

k=1

γh
k r2(h,p

h
k ) ≥ λ2 (7.3)

Using the Lagrangian approach, we can now relax the rate constraints in (7.1) and simplify

the optimization problem as given below.

Minimize :
∑
h∈H

π(h)
L∑

k=1

γh
k

(
g(ph

k )− β1r1(h,p
h
k )− β2r2(h,p

h
k )
)

(7.4)

subject to : ∀h ∈ H, ph
k ∈ Π, γh

k ≥ 0, 1 ≤ k ≤ L and
L∑

k=1

γh
k = 1
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Observe that the optimization problem can be solved via a term-by-term minimization of∑L
k=1 γ

h
k

(
g(ph

k )− β1r1(h,p
h
k )− β2r2(h,p

h
k )
)

for each h ∈ H, i.e.,

Minimize :
L∑

k=1

γh
k

(
g(ph

k )− β1r1(h,p
h
k )− β2r2(h,p

h
k )
)

(7.5)

subject to : ph
k ∈ Π, γh

k ≥ 0 ∀ 1 ≤ k ≤ L and
L∑

k=1

γh
k = 1

Theorem 7.3.2 For g
(
ph
)

:= ph1 + ph2 + phnc, the sum power used when the channel state

is h, the optimization problem in (7.5) has a minimizer.

Proof: The objective function is continuous and the domain is a compact set. Hence,

there exists a minimum and a minimizer for the optimization problem.

The optimal power allocation policy is now obtained by choosing the parameters β1 and

β2 such that the average rate requirements (7.2) and (7.3) are satisfied.

An interesting feature of the optimal power allocation policy with network coding is

that the set of channel states in which positive power is allotted is not an ordered set

with respect to the rates (unlike a water-filling solution studied in [5]). Consider two rate

vectors (λ1, λ2) and (ν1, ν2) such that (λ1, λ2) ≤ (ν1, ν2). Then it is not necessarily true

that the set of channel states in which positive power is allotted for (λ1, λ2) is a subset

of the set of channel states in which positive power is allotted for (ν1, ν2). For example,

consider a two state channel, H := {(7, 0), (5, 5)} and let π(7, 0) = 1
2

= π(5, 5). Let

C := log(1 + hp). Now, we see that, for an arrival rate (x, 0), for x sufficiently small, it is

optimal to allot positive power only to channel state (7, 0). However, for an arrival rate

(x, x), it would be optimal to allot positive power only to the channel state (5, 5) and

perform network coding and allocate no power to the channel state (7, 0).

7.3.3 Power Benefits of Network Coding

So far, we have seen that network coding enhances the set of rates that can be supported

for a given transmission power constraint. Viewed alternately, network coding provides

power savings as well. The following example shows that the power savings with network
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coding can be arbitrarily large. Consider a constant channel gain (no fade, h = 1) system

with the capacity function C(h, p;σ2) given by C(h, p;σ2) = log
(
1 + hp

σ2

)
. For a given

arrival rate vector (λ, λ), define pλ as the minimum average power required to stabilize

the queues. The transmission power is minimized by network coding all the packets, and

in our example, we have, λ = log
(
1 + pλ

σ2

)
or pλ = σ2(eλ − 1). Suppose that we choose

not to network code. Then, the minimum power required to support the arrival rate, p̃λ,

is given by, p̃λ = σ2(e2λ− 1). For large λ, p̃λ

p
≈ eλ, which is unbounded. We note that the

above bound is strictly a function of the capacity curve C(h, p;σ2). For example, when

C(h, p;σ2) =
√

hp
σ2 , a similar analysis will show that p̃λ

p
= 4, i.e., the power gain with

network coding is bounded.

In fact, such bounds hold true for arbitrary arrival rates and channel processes. For

example, consider an average arrival rate (λ1, λ2) and an ergodic channel process with the

transmission rate function C(h, p;σ2) =
√

hp
σ2 . Let p(λ1,λ2), pλ1 and pλ2 be the minimum

average powers required to support the arrival rates (λ1, λ2), (λ1, 0) and (0, λ2). Trivially,

p(λ1,λ2) ≥ max(pλ1 , pλ2). Let p̃(λ1,λ2) be the minimum power required to support the arrival

rates without network coding. Then, again, p̃(λ1,λ2) ≤ max(4pλ1 , 4pλ2); The bound is

achievable by allotting half the time slots exclusively for both the users. Hence,
p̃(λ1,λ2)

p(λ1,λ2)
≤ 4,

or, the power gain with network coding is bounded again.

In practice, when the arrival rates are small, the set of channel states that are network

coded are less. Hence, the benefit of network coding could be small. However, with

increasing rates, the number of channel states that are network coded increases as well.

Then, network coding becomes beneficial as it provides substantial power gains.

7.4 Power - Delay Tradeoff

In the previous section, we obtained the minimum average power required to achieve

stability when the arrival rates are within the capacity region. It is well known that

(see [55]) with minimum power, infinite delay has to be allowed in the system (e.g., for

i.i.d. arrival process and i.i.d. channel process). Now, one can tradeoff the average power

required to support the arrival process with the average queueing delay in the system. In
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this section, we will study this tradeoff for our network scenario.

Define Q(t) as the aggregate queue length in the system at time t (see Figure 7.4),

Q(t) := Q1(t) + Q2(t). We now define the time average of the mean aggregate queueing

delay as,

Davg = lim sup
t→∞

1

t

t∑
1

E[Q(t)]

(λ1 + λ2)

In [55], for a single downlink wireless fading channel with arrival rate λ into the queue, it

was shown that, for i.i.d. arrival process and i.i.d. channel process, the asymptotic optimal

average queueing delay (Davg) scales as Ω
(

1√
v

)
for an excess average power of O(v), i.e.,

for an average power of Pλ + O(v), where Pλ is the minimum power required to support

the arrival rate λ, the average queueing delay scales as Ω
(

1√
v

)
. A buffer threshold based

policy was used to achieve the optimal tradeoff. The results were extended to multi-user

downlink wireless fading channels in [45]. However, the results in [45] are not applicable

here (for the network coding case), because, the proof (in [45]) requires the Jacobian

determinant of the minimum power cost function at the point of interest (λ1, λ2) to be

non-zero. In the remainder of this section, we will study the optimal power-delay tradeoff

achievable with network coding (for a two link wireless network) and show that the average

queueing delay can scale only as Ω
(

1
v

)
, and not as Ω

(
1√
v

)
(recall that for v close to 0,

1
v
> 1√

v
). We will motivate the tradeoff by considering a simpler model, without channel

fade and with Poisson arrival of packets. We conjecture that the results can be extended

to more complex scenarios as well.

Consider the wireless network in Figure 7.4, without channel fading and with Poisson

arrival of packets with rate (λ, λ). Let Pλ be the minimum power required to support

the arrival rate (λ, 0) (and (0, λ)). Then, clearly, Pλ is the minimum power required to

support the arrival rate (λ, λ) as well. We achieve this minimum power by network coding

every packet in the system. Packets of either traffic are queued until they can be network

coded. This delay component is independent of the transmission delay and we define this

delay as the network-coding delay.

From [55], we know that the optimal delay tradeoff for arrival rates (λ, 0) and (0, λ)

is Ω
(

1√
v

)
. Delay for the single user traffic is attributed to the transmission delay (or the
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transmission rate). In our scenario, with an arrival rate (λ, λ) into both the queues, delay

in the network comprises two components, transmission delay and network-coding delay.

Without loss of generality, in this example, we will assume that the transmission delay

is zero, and consider only the network-coding delay. Suppose that the transmission rate

function is linear in the allotted power, i.e., C(p) = kp, where p is the allotted power and

k > 0 is a constant. Then, the optimal policy would be to transmit at the maximum

rate Cmax = C(pmax) at all the time. The policy is optimal because the energy spent in

transmitting a packet is independent of the bit rate when C(p) is a linear function of p.

Hence, delay is minimized by maximizing the transmission rate. Now, when the maximum

transmission rate is unbounded (e.g., when pmax = ∞), we do not have any transmission

delay in the network. In this example, we will assume that there is no transmission delay,

and consider only the network-coding delay.

We will assume that every packet transmission consumes 1 unit of energy. When the

scheduler network codes, then only 1
2

unit of energy is consumed per packet transmission.

Consider any scheduling policy, and let f(v) be the fraction of packets that are not

network coded with the scheduling policy. Then, the average power required to support

the arrival rate (λ, λ) is given by 2λ
(
(1− f(v))1

2
+ f(v)

)
= 2λ(1

2
+ f(v)), i.e., the excess

average power used is O(f(v)). Hence, if the excess average power used is O(v), then the

fraction of uncoded packets is also O(v). Thus, a constraint on average power directly

translates into a constraint on network coding, which governs the queueing delay in the

system.

As we have assumed that the transmission delay is zero, we do not gain anything by

making the packets wait in both the queues. Hence, when there are packets in both the

queues, we will serve them immediately. In other words, only one of the buffers has positive

queue at any time. Now, the system evolution can be represented by a single variable

Q, which represents the queue status, e.g., Q = Q1 − Q2. Define {µi,−∞ ≤ i ≤ ∞},

as the service rate chosen when the queue size is i; µi is the rate of departure of packets

from state i. Clearly, we have µi ≥ λ for all i, because every packet arrival into the

other queue is counted as a service. In addition, we could decrease the queueing delay by
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Figure 7.6: Continuous Time Markov Chain depicting the state evolution of the exam-
ple system with network coding and zero transmission delay. The state represents the
difference (Q1 −Q2) of the queues in the two buffers. Here, µi ≥ λ for all i.

increasing the service rate µi beyond λ. µi can be viewed as a control parameter in state

i which determines the fraction of packets that are network coded. For example, when

µi = λ, all the packets are network coded. When µi > λ, µi − λ is the departure rate

of uncoded packets (when the system is in state i). Figure 7.6 shows the state evolution

of the Markov chain Q when the service rate is {µi,−∞ ≤ i ≤ ∞}. For π(i) the steady

state distribution of Q, the mean queue length of the system is now given by,

∞∑
i=−∞

|i|π(i) (7.6)

and the fraction of packets that are not network coded is given by

1

2λ

∞∑
i=−∞

π(i) (µi − λ) (7.7)

Our problem is to minimize the queueing delay (7.6) subject to a constraint on the

fraction of uncoded packets (7.7), equivalently, the excess average power. It is now easy to

show that the optimal tradeoff for delay is Ω
(

1
v

)
when the excess average power is O(v).

We have motivated the proof in Appendix 7.6.1 by restricting to exponential service rates

{µi,−∞ ≤ i ≤ ∞}. While we have considered a simple network model (no channel fade)

and zero transmission delay in this example, we note that the results can be extended to

more complex scenarios. In [51], the authors propose a scheduling scheme which achieves

Ω
(

1
v

)
tradeoff for delay for fading channels and concave transmission rate functions. Our

contribution is to prove the optimality of the tradeoff achieved in [51].
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7.5 Summary

In this chapter, we have studied a network coding and power allocation problem for a

two link slotted wireless network with bidirectional traffic. We assumed that the central

node can network code data packets belonging to the two routes (involved in bidirectional

communication) and focussed on the downlink scheduling problem at the central node. In

this framework, we defined the capacity region of the network and obtained the optimal

power allocation policy and the network coding strategy that minimizes the average power

requirement to support a given arrival process. Finally, we studied the asymptotic optimal

tradeoff achievable between the average transmission power and the average queueing

delay in the presence of network coding.

7.6 Appendix

7.6.1 Delay is Ω
(

1
v

)
if Excess Power is O(v)

All order notations in this section are with respect to v → 0. We will use the following

results in this section. For v > 0, define ρ := λ
λ+v

, where λ > 0. Then as v → 0, we have,

∞∑
i=0

ρi =
1

1− ρ
=
λ+ v

v
= Θ

(
1

v

)

ρ
1
v =

(
λ

λ+ v

) 1
v

= Θ(1)

and,

1
v∑

i=0

ρi =
∞∑
i=0

ρi −
∞∑

i= 1
v
+1

ρi =
1

1− ρ
− ρ

1
v
+1 1

1− ρ
=

1

1− ρ

(
1− ρ

1
v
+1
)

= Θ
(

1

v

)
Θ(1) = Θ

(
1

v

)

where we have assumed that 1
v

is an integer.

Consider any scheduling policy, and let f(v) be the average fraction of packets that

are not network coded with the scheduling policy. Then, the average power required

to support the arrival rate (λ, λ) with the scheduling policy is 2λ
(
(1− f(v))1

2
+ f(v)

)
=
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λ(1+2f(v)). Hence, if the excess average power used is O(v), then the fraction of uncoded

packets is also O(v). Hence, hereafter, we will use these terms (fraction of uncoded packets

and excess average power) interchangeably.

For the network shown in Figure 7.4, without channel fade and with Poisson arrival of

packets, we will now show that, average packet delay is Ω
(

1
v

)
if the excess average power is

O(v). We will prove the result by contradiction, i.e., we will show that there does not exist

any scheduling policy such that the average delay is Θ
(

1
v1−ε

)
, ε > 0, if the excess average

power is O(v). We will restrict to exponential rate controls (i.e., {µi,−∞ ≤ i ≤ ∞} are

exponential), and hence, the CTMC shown in Figure 7.6 represents the system evolution.

Suppose that there exists a rate allocation policy {µ̃i,−∞ ≤ i ≤ ∞}, with an excess

average power O(v) and average queueing delay, Θ
(

1
v1−ε

)
= k

v1−ε , k > 0. We will assume

that µ̃i = µ̃−i, and µ̃i are monotone increasing in |i|. Also, we will assume that µ̃i =

λ+Θ(v1−ε) for large |i|. A rough justification is the following, we require µ̃i ≥ λ+Θ(v1−ε)

for large |i| to support Θ
(

1
v1−ε

)
queueing delay. Further, for the target average queueing

delay scaling, we can minimize the average power if we set µ̃i = λ+ Θ(v1−ε).

Let {π̃(i),−∞ ≤ i ≤ ∞} be the stationary distribution of the queue obtained from

solving the CTMC shown in Figure 7.6, and

π̃(i) =
1 +

∑|i|
j=1

∏j
k=1 ρ̃k

1 + 2
∑∞

j=1

∏j
k=1 ρ̃k

where ρ̃i = λ
µ̃i

. We will first show that the delay constraint, k
v1−ε , requires the denominator

of π̃ to be equal to Θ
(

1
v1−ε

)
. Then, we will show that the network coding constraint

(equivalently the excess power constraint) requires the denominator of π̃ to be Ω
(

1

v1− ε
2

)
,

which yields the contradiction.

As we have assumed that
∑

i |i|π̃(i), the average queueing delay, to be equal to k
v1−ε ,

we require that the probability the queue exceeds 2k
v1−ε is less than 1

2
, i.e.,

1−
2 k

v1−ε∑
i=−2 k

v1−ε

π̃(i) ≤ 1

2
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or,
2 k

v1−ε∑
i=−2 k

v1−ε

π̃(i) ≥ 1

2

Rewriting in terms of ρ̃i, we have,

1 + 2
∑ 2k

v1−ε

i=1

∏i
j=1 ρ̃j

1 + 2
∑∞

i=1

∏i
j=1 ρ̃j

≥ 1

2

Upper bounding ρ̃j by 1 (since µ̃j ≥ λ for all j) in the numerator of the above inequality,

we have,

1 + 2
(

2k
v1−ε

)
1 + 2

∑∞
i=1

∏i
j=1 ρ̃j

≥ 1

2

Rearranging terms, we get

2

(
1 +

4k

v1−ε

)
≥ 1 + 2

∞∑
i=1

i∏
j=1

ρ̃j

or,

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j = O
(

1

v1−ε

)

for small v. But, we have assumed that µ̃i ≤ λ+ Θ(v1−ε) for all i. Hence, we require,

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j = Ω
(

1

v1−ε

)

as well. From the above two expressions, we conclude that,

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j = Θ
(

1

v1−ε

)
(7.8)

We have assumed that λ ≤ µ̃i ≤ λ + Θ(v1−ε) for all i. Further, we know that

µ̃i = λ+ Θ(v1−ε) for large |i|. Hence, there exists a Nv such that µ̃i ≥ λ+ Θ(v1− ε
2 ) for all

|i| ≥ Nv. Now, consider the constraint on the fraction of uncoded packets,

O(v) =
2

2λ

∞∑
i=1

π(i)(µ̃i − λ)
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≥ 2

2λ

∞∑
i=Nv

π(i)(µ̃i − λ)

≥ 2

2λ

∞∑
i=Nv

π(i)Θ
(
v1− ε

2

)

= Θ
(
v1− ε

2

) 2

2λ

∞∑
i=Nv

π(i)

Since O(v) is smaller than Θ
(
v1− ε

2

)
for v → 0, we require that 2

∑∞
i=Nv

π(i) < Ω(1).

Rewriting the condition in terms of ρ̃i, we need to have

2

∏Nv
j=1 ρ̃j

(
1 +

∑∞
i=Nv+1

∏i
j=Nv+1 ρ̃j

)
1 + 2

∑∞
i=1

∏i
j=1 ρ̃j

< Ω(1)

Substituting from (7.8) in the denominator of the above expression, we get,

2

∏Nv
j=1 ρ̃j

(
1 +

∑∞
i=Nv+1

∏i
j=Nv+1 ρ̃j

)
Θ
(

1
v1−ε

) < Ω(1) (7.9)

Consider the summation series in the numerator of the left hand side expression of the

above equation, i.e., 1 +
∑∞

i=Nv+1

∏i
j=Nv+1 ρ̃j. Since µ̃i ≤ λ+ Θ(v1−ε) for all i, we have,

1 +
∞∑

i=Nv+1

i∏
j=Nv+1

ρ̃j = Ω
(

1

v1−ε

)

Substituting in (7.9) and simplifying the expression, we need,

Nv∏
j=1

ρ̃j < Ω(1) (7.10)

Now, µ̃i ≤ λ+ Θ(v1− ε
2 ) for all i ≤ Nv. Hence,

(
λ

λ+ Θ(v1− ε
2 )

)Nv

≤
Nv∏
j=1

ρ̃j

But,
(

λ

λ+Θ(v1− ε
2 )

)Nv

= Ω(1) for Nv = O
(

1

v1− ε
2

)
. Hence, for

∏Nv
j=1 ρ̃j < Ω(1), we need

Nv > O
(

1

v1− ε
2

)
.
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Now consider the summation series in the left hand side of the equation (7.8).

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j = 1 + 2
Nv−1∑
i=1

i∏
j=1

ρ̃j + 2
∞∑

i=Nv

i∏
j=Nv

ρ̃j ≥ 1 + 2
Nv−1∑
i=1

i∏
j=1

ρ̃j

Lower bounding ρ̃j by λ

λ+Θ(v1− ε
2 )

for all i ≤ Nv, we have,

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j ≥ 1 + 2
Nv−1∑
i=1

(
λ

λ+ Θ(v1− ε
2 )

)i

But,
∑Nv

i=1

(
λ

λ+Θ(v1− ε
2 )

)i

= Θ
(

1

v1− ε
2

)
for Nv > O

(
1

v1− ε
2

)
. Hence, we have

1 + 2
∞∑
i=1

i∏
j=1

ρ̃j ≥ Θ
(

1

v1− ε
2

)

But we know from (7.8) that 1 + 2
∑∞

i=1

∏i
j=1 ρ̃j = Θ

(
1

v1−ε

)
which is strictly smaller than

Θ
(

1

v1− ε
2

)
, which gives a contradiction. Hence, there does not exist a ε > 0 such that the

average delay is Θ
(

1
v1−ε

)
, or, the optimal delay is only Ω

(
1
v

)
for an excess average power

of O(v).



Chapter 8

Delay Optimal Scheduling in a Two

Hop Vehicular Relay Network

8.1 Introduction

In the previous chapters, we have studied resource optimization problems for stationary

wireless nodes. In this chapter, we consider a mobile multihop wireless network scenario

and study a delay minimization problem. We characterize the queueing delay (at the

buffer of the source node) as well as the transit delay (in the mobile nodes).

We consider a scheduling problem in a wireless network where vehicles are used as

store-and-forward relays. A stationary source node wishes to communicate a file to a

stationary destination node, located beyond its communication range. In the absence of

any fixed infrastructure connecting the source node and the destination node, we study

the possibility of data transfer by relaying the packets of the file using vehicles passing by.

For example, the source and the destination of the file transfer could be located by the

side of a road. At random times, vehicles equipped with radio transceivers (and willing

to serve as relays) pass by the source node towards the destination node, with speed v

sampled from a known probability distribution. The source node communicates packets

of the file to the destination node, by using these vehicles as relays. In this chapter, we

assume that the vehicles communicate with the source node and the destination node

174
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only, and they do not communicate among themselves. Thus, all packet communication

between the source and the destination involves two hops. Packet delays in this network

scenario comprise two components; queueing delay at the source node (before the packet

is relayed) and transit delay in the relay vehicle (until the packet is delivered). The transit

delay is assumed to be a function of the speed of the vehicle, and we assume that the

source node has full knowledge of the vehicle speed at the time of relaying.

As the decision to relay a packet is taken only once (by the source node), there arises

a natural tradeoff between the queueing delay of the packet and its transit delay. A small

average queueing delay leads to large average transit delay and vice versa. Our objective

is to study the source node’s sequential decision problem of transferring packets of the file

to vehicles as they pass by, with the objective of minimizing the average packet delay in

the network. We study both the finite file size case and the infinite file size case. In the

finite file size case, we are interested in minimizing the expected delay to transfer the file

(queueing delay plus the transit delay). In the infinite file size case, we study the optimal

tradeoff achievable between the average queueing delay of the packets at the source node

buffer and the average transit delay of the packets in the relay vehicle.

The above situation would arise in a wireless data network where there is limited

access to backbone infrastructure and vehicles are used as a means of communication

(as a relay). The fixed infrastructure of the wireless data network would consist of data

posts located at various points along the roads. The data posts, in general, need not

communicate directly with each other and we envision the possibility of using vehicles

passing by to route packets among the data posts. Some of the data posts are connected

to the backbone network, which in turn is connected to the Internet (we would call such

data posts as gateway-data posts). Except for a few gateway-data posts, the network

requires very little infrastructure, i.e., the data posts can be deployed anywhere along the

roads, even without any direct connectivity to any other data post or a fixed network. The

data posts function both like routers as well as (WLAN) access points in hot-spots. End

users communicate via the data posts, and the packets are routed appropriately to their

destination using the vehicles. The advantage of the proposed architecture as compared
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packet
destination
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packet
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Figure 8.1: A vehicular relay network: “Source car” has z data packets to communicate
to the “destination car”. The packets are first transferred from the source car to the
stationary node S. Node S communicates the packets to another stationary node D
using a “relay car” that passes by the nodes S and D. Finally, the packets are transferred
from the stationary node D to the “destination car”.

to a traditional wireless network is that, we maintain network connectivity among the

data posts using the vehicles and hence, there is no interference or the need of network

design. Figure 8.1 shows an example scenario. A “source car” wishes to transfer a file to

a “destination car”, beyond its communication range. The packets are first transferred

from the source car to a stationary node S. Then, the file is communicated to another

stationary node D using a “relay car”, which passes by nodes S and D. The file is finally

transferred from the stationary node D to the destination car, when the destination car

passes by node D.

Delay in such networks could be quite large. For example, a source node may have to

wait for few tens of seconds to a few minutes, before a vehicle arrives. Similarly, the relay

vehicle might cover the distance between the source and the destination node in a few

minutes to even hours. The TCP protocol developed for the Internet will not work with

such large end-to-end delays. Our vehicular network is an example of a Delay Tolerant

Network (or Disruption Tolerant Network/DTN). The main characteristics of DTN are,

intermittent connection, large delay and asymmetric data rates. The transmission oppor-

tunities could be random and can include large intermediate delays and arbitrary rates.

The protocols suited to the Internet (with delay tolerance of a few tens of seconds) are not

appropriate here and we require new protocols and strategies for the efficient operation of

such networks. A number of recent research works focus on the performance, optimization
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and operation of such delay tolerant networks. For example, in [32], the authors propose a

MaxProp protocol for effective routing of messages, by prioritizing the schedule of packets

transmitted to other peers. These priorities are based on the network properties like path

likelihoods to peers. In this chapter, we restrict ourselves to a scheduling problem in a

simple one hop communication scenario between two data posts, a source node (S) and a

destination node (D). The file (at the source node) is assumed to be partitioned into fixed

length fragments. These fragments are not necessarily IP packets and can be of arbitrary

size depending on the bit rates achievable between the source/destination node and the

relay vehicles ([36] discusses the idea of aggregating data into “bundles” (of fixed size) in

DTNs). In this work, for ease, we will refer to such fragments only as packets. We have

assumed that the source and the destination nodes (S and D) are stationary. Extensions

to mobile source and destination nodes and to arbitrary networks are not studied here

and could be considered as future work.

8.1.1 A Survey of the Literature

In this chapter, we are interested in the throughput and delay performance of a vehicu-

lar relay network. In [41], Grossglauser and Tse studied the capacity of mobile ad hoc

networks with n random source-destination pairs. They showed that mobility increases

the capacity of ad hoc networks (O(n)) as compared to fixed networks (O (
√
n)). The

optimal throughput-delay tradeoff for the scenario was later studied in [43]. We consider

a single source-destination pair, and assume that passing by vehicles (governed by a dis-

tribution) are used to relay packets between them. The traffic is assumed to be along a

road connecting the source and the destination, and our framework is very similar to the

vehicular network problems studied in [73], [52] and [8]. The focus of such works is emer-

gency applications. The objective is to communicate emergency or traffic information to

avoid accidents and traffic congestion. The vehicles use a broadcasting strategy to com-

municate packets among themselves. Delay, and not throughput, is the most important

performance measure in such problems, and hence, they tend to be throughput inefficient.
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In [35], the authors study the bandwith in road to vehicle communications using simula-

tions. They compare the performance of the system for different medium access protocols

used in the road-to-vehicle communication. We also study the bandwidth in the road to

vehicle communication, however, in terms of the distribution of the interarrival times and

the vehicle speeds. Further, we study the delay characteristics of the system as well.

The idea of using stationary nodes as data posts can be easily motivated from the

literature. In [31], the authors study the idea of using vehicles to carry and forward data

packets to the destination. Using a vehicle mobility model, the next vehicle to forward the

packet is chosen such that the packet delay is minimized. Special purpose ferrying nodes

were suggested in [70] to improve the delay characteristics of such mobile network. In our

framework, we have assumed fixed nodes (data posts like S and D), instead of mobile

nodes as suggested in [70], for storing and forwarding the data packets. [15] proposed

the idea of INFOSTATIONS, with isolated pockets of high bandwidth connectivity, for

future data and messaging services. Our data posts act both as INFOSTATIONS as well

as routers, and the vehicles serve the purpose of relay nodes as well.

8.1.2 Outline of the Chapter

In Section 8.2, we describe the network model, and in Section 8.3, the optimization prob-

lem. We study the expected total delay minimization problem for the finite file case in

Section 8.4. In Section 8.5, for the infinite file case, we study the asymptotically opti-

mal tradeoff achievable between the queueing delay and the transit delay of the packets.

Section 8.6 concludes the chapter.

8.2 The Network Model

A stationary source node intends to transfer a file to a stationary destination node, located

at a distance s metres away (i.e., a road of length s connects the two). At random times,

vehicles that drive in the direction of the destination node enter the communication range

of the source node. We assume that the interarrival times of the vehicles are i.i.d. and have
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a c.d.f. I(·) known to the source node. The ith vehicle that enters the communication

range of the source node travels at an average speed Vi towards the destination node,

where {Vi, i ≥ 1} are assumed to be an i.i.d. sequence with c.d.f. V (·) (known to the

source node). We assume that the ith vehicle (with speed Vi) takes s
Vi

seconds to cover

the distance between the source and the destination. Further, we make a simplifying

assumption that the interarrival times of the vehicles are distributed independent of the

speed of the vehicles. As the ith vehicle enters the communication range of the source

node, the source node gets information about this event as well as about the speed of the

vehicle, Vi.

In this work, we assume that the source node can relay at most a single packet to

a vehicle, when it passes the coverage area of the source, independent of the vehicle

speed. We note that the time spent by the vehicles in the communication range of the

source/destination will depend on the speed of the vehicle. This may permit the vehicles

to relay different amounts of data (depending on their speed). However, when the data

posts (such as S and D in Figure 8.1) are located at a junction (e.g., a traffic signal or

a crossing), the vehicle speeds in the coverage region will have little correlation with the

average speed Vi achieved over the distance s to the destination. Hence, we restrict to

single packet (of arbitrary but fixed size) per relay vehicle model. Packet relay to vehicles

(with different speeds) is achieved either by coding packets at different data rates or by

restricting the set of vehicles to which communication is permitted.

Due to randomness in the interarrival times and in the vehicular speeds, it is possible

that the different packets of a file arrive at the destination node in a random order. We

assume that the destination node has the capability to reassemble these packets. Also,

it is possible that more than one vehicle is in the coverage region of the source or the

destination node at any given point of time. We assume that both the source and the

destination nodes are capable of simultaneous communication with vehicles, possibly in

different, non-interfering bands.
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8.3 The Optimization Problem

Packet delay in this network comprises queueing delay at the source node, transmission

delay (depends on the bit rate at which data is transmitted to/from the relay vehicle) and

transit delay in the relay vehicle. In this work, we assume that the transmission delay

is very small as compared to the transit delay and study only the queueing delay and

the transit delay of the packets. We consider the following two versions of the scheduling

problem in this chapter.

1. Finite File Case: The source node has a single file with z packets (1 ≤ z <∞).

As we relay only one packet per vehicle, this requires that the source node use

z vehicles to relay the file. Starting with z packets at t = 0, the problem is to

sequentially select z vehicles, so as to minimize the expected time until the file

is completely transferred to the destination. We note here that the random file

transfer completion time is the maximum of the sojourn times of the z packets in

the network, and not just the sojourn time of the last transmitted packet. When

minimizing the expected sojourn time of the file (queueing delay plus the transit

delay), if a slow vehicle arrives, it might be optimal to ignore it and to wait until

the next vehicle arrives in the hope that it would be faster. In fact we would wish

it to be sufficiently faster so as to compensate for the extra waiting time. In this

work, we study this tradeoff and find the delay minimizing policy.

2. Infinite File Case: We assume that the source node has infinitely many packets

to communicate to the destination node. More precisely, there is a packet arrival

process at the source node, independent of the vehicle arrival process. Packets are

queued at the source buffer until transmission, and our aim is to study the impact

of the scheduling policy on the queueing delay and the transit delay of the packets.

There is a natural tradeoff between the queueing delay and the transit delay of the

packets. We can minimize the queueing delay by choosing every vehicle (slow or

fast) as a relay, thereby increasing the transit delays of the packets. Similarly, by

relaying only to fast vehicles, we can decrease the transit delay of the packets while
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increasing the queueing delay at the source buffer. We first obtain the maximum

throughput sustainable in the network for a given transit delay constraint. Using the

throughput vs transit-delay curve, we then characterize the asymptotically optimal

tradeoff between the queueing delay and the transit delay of the packets in the

network.

8.4 Finite File Size

In this section, we study the case where the source node has a file comprising z packets

(1 ≤ z < ∞) to communicate to the destination node. We are interested in minimizing

the expected delay in transfering the file completely to the destination. Each instant at

which a vehicle enters the communication range of the source node, a decision has to be

made on using the new vehicle as a relay. Starting with the first vehicle to arrive1, the

decision problem evolves over vehicle arrival instants {T1 = 0, T2, · · ·} with vehicle speeds

{V1 = v, V2, · · ·}. As discussed in Section 8.2, {Tk, k ≥ 1} are renewal instants with i.i.d.

interarrival times {Ik+1 = Tk+1 − Tk, k ≥ 1} and the vehicle speeds {Vk, k ≥ 1} are i.i.d.

with c.d.f. V (·). Let Xk denote the residual number of packets of the file, at the source

node, at time instant Tk (with X1 = z). Define Yk as the action chosen at time instant Tk,

i.e., the number of packets relayed to the kth vehicle. In our context, we have, Yk ∈ {0, 1}.

When Xk = 0, Yk = 0 is the only permissible action.

We are interested in the total delay incurred in transfering the file. Let Ti denote

the random time at which the ith packet of the file arrives at the destination. Then, the

random delay of the file transfer is given by max(T1, T2, · · · , Tz). Suppose that the source

node had relayed l < z packets up to time Tk. Then, the partial cost (delay) incurred

due to the transfer of l packets is max(T1, · · · , Tl). Define {Dk, k ≥ 1} as the residual

delay (after Tk) for the last of any previously relayed data to reach the destination, i.e.,

Dk := (max(T1, T2, · · · , Tl) − Tk)
+. Clearly, Tk + Dk lower bounds the time required

to complete the file transfer. Further, the decision to relay a packet at Tk is clearly

1the mean time until the arrival of the first vehicle is a fixed quantity. Hence, this need not be
accounted for in the optimization.
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influenced by the value of Dk. For example, when s
Vk

is such that s
Vk
< Dk, then, a packet

relay by vehicle k does not increase the file transfer delay, because, max(T1, T2, · · · , Tl) =

max(T1, T2, · · · , Tl+1) in this case. Also, Dk together with Tk contains all the necessary

information required to define the partial and total cost functions at time Tk. Hence, we

define (Xk, Vk, Dk) as the system state. The system state dynamics is given by,

Xk+1 = Xk − Yk

Dk+1 =
(
max

{
Dk, I{Yk>0}

s

Vk

}
− Ik+1

)+

Define Rk(xk, vk, dk, yk), the single stage cost associated with the system state (xk, vk, dk)

and action yk as,

Rk(xk, vk, dk, yk) =



0 xk = 0

Ik+1 xk > 1

Ik+1 xk = 1 and yk = 0

max
{
dk,

s
vk

}
xk = 1 and yk = 1

(8.1)

Rk is equal to the interarrival time Ik+1, when the file transfer is incomplete. Hence,

the partial sum
∑k

i=1Ri(xi, vi, di, yi), corresponding to the cost incurred up to time in-

stant Tk, is equal to Tk when the file transfer is incomplete. Now, for a sequence

{(Xk, Vk, Dk, Yk), k ≥ 1}, satisfying the above dynamics, define the total cost function

as
∞∑

k=1

Rk(Xk, Vk, Dk, Yk)

The total cost expression is the random time of delivery of the file to the destination from

the moment T1 = 0. Our aim is to minimize the expected value of the above total cost

function, i.e., to minimize E{I,V } [
∑∞

k=1Rk(Xk, Vk, Dk, Yk)], where the expectation is over

the interarrival times {I1, I2, · · ·} and the vehicular speeds {V1, V2, · · ·}. The minimization

is over the set of all policies {πk, k ≥ 1}, where πk, the decision rule for time instant Tk,

is a function of {(Xj, Vj, Dj), 1 ≤ j ≤ k} and is a distribution on {0, 1}.



Chapter 8. Delay Optimal Scheduling in a Two Hop Vehicular Relay Network 183

Given X1 = z, V1 = v and D1 = 0, our aim is to solve the following problem,

inf
{πk,k≥0}

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, Yk)

∣∣∣∣∣X1 = z, V1 = v,D1 = 0

]
(8.2)

The problem has been formulated in a Markov decision process framework with a total cost

criterion. Suppose that the speed of the vehicle is continuously distributed (or discrete)

within a bounded set, i.e., Vk ∈ [vmin, vmax]. Further, assume that the interarrival time

is continuously distributed (or discrete). Then, Dk ∈ [0,∞), and also, the state space of

(Xk, Vk, Dk) is a Borel set. The action space Yk is finite in our case. When E[I], the mean

interarrival time of vehicles, is finite, the single stage cost function R, and its expectation

is bounded as well. Then, from [54], we see that there exists a stationary deterministic

Markov policy that achieves the minimum for (8.2), i.e., there exists a optimal policy π∗

such that π∗k ≡ π∗(xk, vk, dk) ∈ {0, 1}. The optimal cost function satisfies the Bellman’s

dynamic programming equation. Also, the stationary policy which solves the Bellman’s

dynamic programming equation is an optimal policy.

Theorem 8.4.1 Let τ ∗(x, v, d) be the optimal value of (8.2). Then, τ ∗(x, v, d) satisfies

the following dynamic programming (DP) equation.

τ ∗(x, v, d) :=
0 x = 0

min
{
E[I] + EI,V [τ ∗(x, V, (d− I)+)],max

(
s
v
, d
)}

x = 1

miny∈{0,1}
{
E[I] + EI,V [τ ∗(x− y, V, (max(d, I{y>0}

s
v
)− I)+)]

}
x > 1

(8.3)

The stationary policy that chooses the minimizer of the right hand side expression in (8.3)

is an optimal policy.

Remark: Define π∗(x, v, d) as the stationary policy which minimizes the DP equation

(8.3). Notice that π∗(x, v, d) ∈ {0, 1}, as we relay at most one packet using any relay

vehicle. By definition, when x = 0, τ ∗(0, v, d) = 0 and π∗(0, v, d) = 0. When x >

0, the minimum cost function τ ∗ is equal to the minimum of the expected cost of the

two choices, to relay and to not relay. For example, when π∗(x, v, d) = 0, τ ∗(x, v, d)
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is equal to E[I] + EI,V [τ ∗(x, V, (d − I)+)], where E[I] is the mean waiting time before

another vehicle arrives and, EI,V [τ ∗(x, V, (d− I)+)] is the minimum expected delay with

the random interarrival time I and the random vehicle speed V (i.e., when the system

state is (x, V, (d− I)+)).

8.4.1 One Shot Problem (z = 1)

Consider the special case, z = 1. The Bellman equation (8.3) simplifies to

τ ∗(1, v) = min
{
E[I] + E[τ ∗(1, V )],

s

v

}
(8.4)

and τ ∗(0, v) = 0. From Theorem 8.4.1 and (8.4), we see that it is optimal to transmit (i.e.,

y = 1) when, s
v
, the cost of relaying using the current vehicle is less than the expected

future cost, i.e., when

s

v
≤ E[I] + E[τ ∗(1, V )] (8.5)

Observe that the expression on the right hand side does not depend on v. Hence, the

optimal policy is a threshold policy. Suppose that the vehicle speeds are continuously

distributed within a bounded set, [vmin, vmax]. Also, suppose that there exists a v∗ ∈

[vmin, vmax], which satisfies (8.5) with equality, i.e.,

s

v∗
= E[I] +

∫ vmax

u=vmin

τ ∗(1, u)dV (u) (8.6)

For any v ≥ v∗, s
v
≤ s

v∗
. Hence, we see that it is optimal to relay if a vehicle arrives with

speed v ≥ v∗ and the optimal cost-to-go value is s
v
. Equivalently, if a vehicle arrives with

speed v ≤ v∗, then it is optimal not to relay using this vehicle. The optimal cost-to-go

value is the same (independent of v) and is equal to E[I] +
∫ vmax
u=vmin

τ ∗(1, u)dV (u). From

(8.6), we see that τ ∗(1, v) = τ ∗(1, v∗) = s
v∗

for all v ≤ v∗. Substituting for τ ∗ (for the two
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cases) in (8.6) and expanding the integral, we have,

s

v∗
= E[I] +

∫ v∗

u=vmin

τ ∗(1, u)dV (u) +
∫ vmax

v∗
τ ∗(1, u)dV (u)

= E[I] +
(
s

v∗

)(
1−

∫ vmax

v∗
dV (u)

)
+
∫ vmax

v∗

(
s

u

)
dV (u)

Cancelling s
v∗

, we get,

s

v∗

∫ vmax

v∗
dV (u) = E[I] +

∫ vmax

v∗

(
s

u

)
dV (u) (8.7)

Rearranging (8.7), we have,

s

v∗
=

1∫ vmax
v∗ dV (u)

(
E[I] +

∫ vmax

v∗

s

u
dV (u)

)

Remarks 8.4.1 The optimal threshold v∗ has a simple interpretation. v∗ is an optimal

threshold speed when the time required for the vehicle to reach the destination ( s
v∗

) is equal

to the expected time we need to wait for a vehicle which can be used as a relay (with speed

greater than v∗) and the subsequent time to travel to the destination.

8.4.2 Piecewise Transmission Problem (z > 1)

The source node has z, z > 1 packets to relay to the destination node. Due to randomness

in the interarrival times and the vehicle speeds, the z packets may reach the destination

out-of-order. The optimal policy and the minimum cost are, hence, a function of the

remaining packets to transmit (x) and the residual delay (d). The following theorem

characterizes the optimal cost-to-go function (τ ∗) and the optimal policy (π∗) for the

piecewise transmission problem.

Theorem 8.4.2 Suppose z > 1. Then, from (8.3), we can conclude the following.

1. τ ∗(x, v, d) is a non-decreasing function of x and d, and a non-increasing function of

v.
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2. The optimal policy π∗(x, v, d) is a threshold type policy with respect to v, with the

threshold depending on x and d.

Proof: See Appendix 8.7.1.

Remark: τ ∗(x, v, d) is the minimum expected delay for relaying x packets to the destina-

tion, with the initial vehicle speed v and residual delay d. Clearly, we would expect τ ∗ to

be a non-decreasing function of x (the delay can only increase with the number of residual

packets). Also, the transit delay associated with a vehicle ( s
v
) is a decreasing function of

v. Hence, we would expect τ ∗ to be a non-increasing function of v. We showed that the

optimal policy π∗(x, v, d) is a threshold policy with respect to v. We conjecture that the

threshold is a non-increasing function of x and of d.

Solving the DP (8.3), for the general case z > 1, is numerically cumbersome. Hence,

we will study a sub-optimal scheduling policy, π̃, which is easy to characterize. Also,

we will bound the difference in cost between the sub-optimal policy (π̃) and the optimal

policy (π∗). For any scheduling policy π, define T π
1 , T π

2 , · · · , T π
z as the random times (after

T1 = 0) at which packets 1, 2, · · · , z reach the destination node. Our original objective is

to solve the following optimization problem.

inf
π

{
E{I,V }[max(T π

1 , T π
2 , · · · , T π

z )]
}

(8.8)

Alternatively, we will solve (8.9) (below) and show that the optimal scheduling policy for

(8.9) provides a good approximation to the optimal value of the original problem (8.8).

Consider the following modified optimization problem,

inf
π

{
max

(
E{I,V }[T π

1 ],E{I,V }[T π
2 ], · · · ,E{I,V }[T π

z ]
)}

(8.9)

Let τ̃ be the optimal value of the alternate objective function, i.e.,

τ̃ := inf
π

{
max

(
E{I,V }[T π

1 ],E{I,V }[T π
2 ], · · · ,E{I,V }[T π

z ]
)}
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Define T π
(w)i as the random waiting time of the ith packet, at the head-of-queue at the

source node. Also, define T π
(t)i as the random transit delay of the ith packet in the relay

node. Then, T π
i =

∑i
k=1 T π

(w)k + T π
(t)i. Also,

E{I,V }[T π
i ] =

i∑
k=1

E{I,V }[T π
(w)k] + E{I,V }[T π

(t)i]

Observe that T π
i depends on T π

j , 1 ≤ j ≤ i − 1, only through T π
(w)j, 1 ≤ j ≤ i − 1 and

does not depend on the transit delay incurred by the previously relayed packets. For any

set of values {E{I,V }[T π
(w)i], 1 ≤ i ≤ z}, we minimize E{I,V }[T π

i ] by minimizing E{I,V }[T π
(t)i]

(the transit delay of the ith packet) subject to E{I,V }[T π
(w)i] (the expected waiting time of

the ith packet). This will yield a threshold policy in v for every i, {vi, 1 ≤ i ≤ z}, i.e.,

there exists a threshold speed vi such that any vehicle with speed v > vi is used as a relay

for the ith packet. Thus, every scheduling policy π can be identified with a collection of z

thresholds for speeds (v1, · · · , vz). The expected sojourn time of the ith packet for a policy

π can now be written as,

E{I,V }[T π
i ] =

i−1∑
j=1

E[I]∫ vmax
vj

dV (u)
+
∫ vmax

vi

s

u
dV (u) (8.10)

It is now straightforward to solve the optimization problem (8.9) by minimizing the ob-

jective function over the vector of thresholds (v1, v2, · · · , vz). Let π̃ = (ṽ1, ṽ2, · · · , ṽz) be

the cost minimizing policy. The following theorem shows a monotonicity property of the

optimal speed thresholds ṽi.

Theorem 8.4.3 Let π̃ = (ṽ1, ṽ2, · · · , ṽz) be the cost minimizing policy for the optimization

problem (8.9). Then, ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽz.

Proof: Suppose not, let ṽi > ṽj where i < j. Now, consider a new scheduling policy

π̂ with threshold speeds (v̂1, v̂2, · · · , v̂z) such that v̂k = ṽk when k 6= i and v̂i = ṽj. Clearly,

E{I,V }[T π̂
k ] = E{I,V }[T π̃

k ] for all 1 ≤ k < i. Since, v̂i < ṽi, E{I,V }[T π̂
(w)i] ≤ E{I,V }[T π̃

(w)i].

Hence, E{I,V }[T π̂
k ] ≤ E{I,V }[T π̃

i ] for all k > i. Also, E{I,V }[T π̂
i ] ≤ E{I,V }[T π̂

j ], since i < j
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and v̂i = v̂j (from (8.10)). Hence,

max
(
E{I,V }[T π̂

1 ],E{I,V }[T π̂
2 ], · · · ,E{I,V }[T π̂

z ]
)
≤ max

(
E{I,V }[T π̃

1 ],E{I,V }[T π̃
2 ], · · · ,E{I,V }[T π̃

z ]
)

or, π̂ is an optimal policy with v̂1 ≤ v̂2 ≤ · · · ≤ v̂z.

The difference in the expected cost between the scheduling policy π̃ and the optimal

policy π∗ is bounded and is obtained below.

Theorem 8.4.4 τ ∗ ≤ E{I,V }[max(T π̃
1 , · · · , T π̃

z )] ≤ τ ∗ + s
ṽ1

, where π̃ := (ṽ1, ṽ2, · · · , ṽz) is

the optimal scheduling policy for (8.9).

Proof: τ̃ = max(E{I,V }[T π̃
1 ], · · · ,E{I,V }[T π̃

z ]) ≥ E{I,V }[T π̃
z ]. Also, we have,

τ ∗ = inf
π

{
E{I,V }[max(T π

1 , T π
2 , · · · , T π

z )]
}

≥ inf
π

{
max

(
E{I,V }[T π

1 ],E{I,V }[T π
2 ], · · · ,E{I,V }[T π

z ]
)}

= τ̃ (8.11)

Hence, E{I,V }[T π̃
z ] ≤ τ̃ ≤ τ ∗. Consider the actual delay of the file transfer with the policy

π̃, i.e., E{I,V }[max(T π̃
1 , · · · , T π̃

z )]. We know that

T π̃
i ≤ T π̃

z +
s

ṽ1

holds true for all 1 ≤ i ≤ z and for every sample path of the interarrival times and the

vehicle speeds. This is because, ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽz, and s
ṽ1

is the maximum transit delay

incurred by any packet. Hence,

max(T π̃
1 , · · · , T π̃

z ) ≤ T π̃
z +

s

ṽ1

Taking expectation on both the sides, we get,

E{I,V }[max(T π̃
1 , · · · , T π̃

z )] ≤ E{I,V }[T π̃
z ] +

s

ṽ1
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But we know that E{I,V }[T π̃
z ] ≤ τ ∗. Hence, we have,

τ ∗ ≤ E{I,V }[max(T π̃
1 , · · · , T π̃

z )] ≤ τ ∗ +
s

ṽ1

which shows that the average delay of file transfer with the policy π̃ is bounded within s
ṽ1

of the optimal value τ ∗.

8.5 Infinite File Size

In this section, we study the case where the source node has infinitely many packets to

communicate to the destination node. Packets arrive at the source node according to

some point process independent of the vehicle speeds and the vehicle interarrival times.

The packets are queued in an infinite buffer at the source node before they are relayed to

the destination node using the vehicles. We are interested in the average packet delay in

this scenario, at the queue in the source node and in transit in the relay vehicles. There

is a natural tradeoff between the queueing delay and the transit delay of the packets. For

example, by choosing every vehicle as a relay, we can minimize the queueing delay of the

packets, while increasing the transit delay. Similarly, by relaying only to fast vehicles, we

can decrease the transit delay of the packets while simultaneously increasing the queueing

delay at the source buffer. We are interested in this tradeoff and study it in an asymptotic

regime.

Each time a vehicle enters the communication range of the source node, the source

node has to make a decision on using the current vehicle (say, with speed v) as a relay.

Here again, we assume that only one packet is relayed using any vehicle. Starting with

the first vehicle to arrive, the decision problem evolves over vehicle arrival instants {T1 =

0, T2, T3, · · ·} with vehicle speeds {V1, V2, V3, · · ·}. Let Xk denote the number of packets

in the source buffer at time instant Tk and let Yk denote the number of packets relayed

using the kth vehicle. As before, Yk ∈ {0, 1}. Of course, when Xk = 0, Yk = 0 is the only
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permissible action. The system state dynamics for the problem is now given by,

Xk+1 = (Xk − Yk)
+ + Ak

where Ak is the number of packets arriving at the source buffer during the time interval

Ik+1 = Tk+1 − Tk. We assume that {Ak, k ≥ 1} is an i.i.d. sequence with mean E[A].

Also, Ak is assumed to be independent of Xk and Yk, but may depend on the interarrival

time Ik+1. Define λ := E[A]
E[I]

, the rate of packets arriving at the source node per second.

Since each vehicle carries at most one packet, we require that λ < 1.

Define Rk(xk, vk, yk), the single stage cost function associated with the system state

(xk, vk) and action yk as

Rk(xk, vk, yk) =
1

λ
xk +

1

λE[I]

yk

vk

The cost expression comprises of two components: the first term xk

λ
corresponds to the

queue length (or the queueing delay) and the second term 1
λE[I]

yk

vk
corresponds with the

transit delay. Consider the following average cost expression with Rk(xk, vk, yk) being the

single stage cost function,

lim sup
k→∞

1

k
E

[
k∑

i=1

(
Xk

λ
+

1

λE[I]

Yk

Vk

)]
(8.12)

Note that when the limits exists 1
λ

limk→∞
1
k
E
[∑k

i=1Xk

]
is the average queueing delay in

the system, and

lim
k→∞

1

k
E

[
k∑

i=1

1

λE[I]

Yk

Vk

]
=

1

λE[I]
lim
k→∞

1

k
E

[
k∑

i=1

Yk

Vk

]

is the average transit delay of the packets (since limk→∞
1
k
E
[∑k

i=1 Yi

]
= λE[I], the mean

number of packet arrivals per vehicle arrival). The average delay minimization problem

can now be studied by minimizing the cost function (8.12). As we are interested in

studying the tradeoff achievable between the queueing delay and the transit delay, we will
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introduce an additional parameter β, β > 0 (essentially a Lagrange multiplier), and study

the following modified average cost problem.

lim sup
k→∞

1

k
E

[
k∑

i=1

(
Xk

λ
+ β

1

λE[I]

Yk

Vk

)]

We have ignored the resequencing delay in the above formulation, as we expect the transit

delay to be bounded in the optimal solution.

In [55], Berry and Gallager have studied the problem of optimal rate and power control

in a fading wireless channel, which has a similar mathematical model. They consider a

slotted wireless fading channel, where the data rate achievable over a slot is a function

of the channel fade “gain” h during that slot and the power allocated P . Packets arrive

into an infinite buffer independent of the queue length and the channel evolution process,

and the objective was to study the tradeoff achievable between the queueing delay at the

buffer and the average power required to support the arrival process. The single stage cost

function in [55] was Xi

λ
+ βPi, where Xi is the queue size at the ith slot, Pi is the power

allocated during that slot, λ is the average arrival rate and β is a Lagrange multiplier.

The optimization problem in [55] was to find a policy π that minimizes the following

objective function.

lim sup
k→∞

1

k
E

[
k∑

i=1

(
Xi

λ
+ βPi

)]

Observe that, our problem formulation is very similar to the problem formulation in [55]

and hence, the results from [55] can be directly extended to our framework by observing

that the average transit delay in our framework is analogous with the average power in

[55]. More formally, we will first define a concave throughput - transit delay function

C(d) equivalent to the the concave throughput - power function C(P ) (capacity of a

power constrained fading channel) used in the Berry and Gallager model. The tradeoff

then follows from the proof in [55].

Queueing delay is a function of throughput (the rate at which packets are served

by the source node), and throughput itself is a function of the transit delay incurred

by the packets. Accommodating a large transit delay leads to large throughput and
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small queueing delay for the packets. The following definition provides the transit delay

constrained throughput for an infinitely backlogged queue.

Definition 8.5.1 Let C(d) be the maximum throughput sustainable for an infinitely back-

logged queue, for a given average transit delay constraint d. C(d) is defined as,

C(d) := max
π

1

E[I]

∫
π(u)dV (u) (8.13)

with π s.t.
s∫

π(u)dV (u)

∫ (
π(u)

u

)
dV (u) ≤ d

and π(u) ∈ [0, 1]

where π(u) is the fraction of vehicles with speed u which are used as a relay by the source

node.

Remark: Trivially C(d) is a non-decreasing function of d. Also, for any d := αd1+(1−α)d2,

where d1, d2 ≥ 0 and α ∈ [0, 1], we see that C(d) ≥ αC(d1)+(1−α)C(d2). Hence, C(d) is

a concave function of d as well. The throughput maximizing policy π∗d (of the optimization

problem (8.13)) can be shown to be a threshold policy, i.e., there exists a v∗ such that for

all v > v∗, π∗(v) = 1.

Let λ be the average arrival rate of packets into the system. Define dλ as the minimum

average transit delay incurred to support the arrival rate λ, i.e., C(dλ) = λ (see Figure 8.2).

Trivially, we know that for any scheduling policy with an average transit delay d ≤ dλ,

the queueing delay in the system will be infinite. Consider the throughput maximizing

schedule π∗d, obtained from the optimization problem (8.13) for an average transit delay

constraint d. For d = dλ +Θ(δ) (where δ > 0), C(d) = C(dλ)+O(δ) = λ+O(δ). Suppose

that we use the fixed schedule π∗d to relay packets to vehicles, independent of the queue

length at the source node buffer. Then, the average transit delay of the packets is O(d).

And, the average queue length (or delay) of the packets at the source buffer is Ω
(

1
δ

)
;

This follows from the fact that an upper bound for the average queue length of a G/G/1

queue with arrival rate λ and service rate λ + Θ(δ) is Θ
(

1
δ

)
. Now, instead of using a

fixed schedule π∗d, we will, as in [55], use two schedules π∗dλ−δ and π∗dλ+δ depending on

the queue size being below and above a predetermined threshold (see Figure 8.4). This
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Figure 8.2: Throughput (C(d)) vs Transit delay (d) for the vehicular network scenario
from (8.13). The maximum transit delay, dmax and the maximum throughput achievable,
Cmax are given by dmax = s

∫ 1
u
dV (u) and Cmax = 1

E[I]
. Given λ, the arrival rate of the

packets into the system, define dλ as the minimum transit delay incurred in supporting
the arrival process, and C(dλ) := λ.

threshold based policy was shown to reduce the average queueing delay to Ω
(

1√
δ

)
for an

average transit delay of dλ +O(δ) (see [55]). The following theorem summarizes the above

discussion, whose proof follows directly from the tradeoff studied in [55].

Theorem 8.5.1 Let the packet arrival process Ak and the vehicular speeds Vk be i.i.d.

and independent of each other. Define λ as the average arrival rate of packets into the

source buffer, and let dλ be the minimum average transit delay incurred to support the

arrival rate λ, i.e., C(dλ) = λ. Suppose that C ′(dλ) > 0 and let the packet arrival process

Ak be a compact subset of R+. Then, for an excess average transit delay of O(δ) (i.e., for

an average transit delay of dλ +O(δ)), the average queueing delay in the system scales as

Ω
(

1√
δ

)
.

Remark: When C ′(dλ) = 0, we can achieve a better tradeoff for delay (see [45]). Also, we

believe that the compactness requirement on Ak (the number of packet arrivals during a

vehicle interarrival time) is not restrictive in practical scenarios.
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Figure 8.3: Figure plots a characteristic tradeoff achievable between the average queueing
delay and the average transit delay when the arrival rate is λ. Observe that the queueing
delay approaches infinity as the transit delay constraint approaches dλ.

d + δ
π

λ
*

d − δ
π

λ
*

buffer
threshold

Figure 8.4: Figure shows the buffer threshold based scheduling policy proposed by Berry
and Gallager. When the queue in the buffer is less than the threshold, a policy π∗dλ−δ is
used and when the queue exceeds the threshold, policy π∗dλ+δ is used to schedule packets.
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8.6 Summary

In this chapter, we have studied a scheduling problem in a wireless network, where vehicles

are used as relays. A stationary source node has a file to communicate to a stationary

destination node, and passing by vehicles are used as relays to transfer the file to the

destination. All packet communication involves only two hops, and we are interested in

minimizing the average queueing delay and the average transit delay of the packets in the

network. We studied both the finite file size case and the infinite file size case. In the finite

file size case, we obtained the expected total delay minimizing schedule using a Markov

decision process framework. We also obtained a simple sub-optimal scheduling policy

whose average delay is within a known bound from the optimal value (obtained from the

MDP formulation). In the infinite file size case, we studied the asymptotically optimal

tradeoff achievable between the queueing delay and the transit delay of the packets. By

defining the maximum throughput sustainable for a given transit delay constraint, we

showed that the average queueing delay of the system scales as Ω
(

1√
δ

)
for an excess

average transit delay of O(δ).

8.7 Appendix

8.7.1 Proof of Theorems and Lemmas

Proof of Theorem 8.4.2.1

Proof: Let π be any stationary Markov policy. For the single stage cost function

Rk(xk, vk, dk, yk) given by (8.1), the random total cost function with the scheduling policy

π is given by,
∞∑

k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))



Chapter 8. Delay Optimal Scheduling in a Two Hop Vehicular Relay Network 196

And, the expected total cost (or the average delay in delivery) for a file with z packets,

initial vehicle speed v and residual delay d is given by,

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))

∣∣∣∣∣X1 = z, V1 = v,D1 = d

]

Consider two file sizes z and z + 1. We aim to prove that τ ∗(z, v, d) ≤ τ ∗(z + 1, v, d).

For π, a stationary Markov policy, define π−1, another stationary Markov policy, as

π−1(x, v, d) = π(x+ 1, v, d)

and π−1(0, v, d) = 0. Now, it is straightforward to see that

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))

∣∣∣∣∣X1 = z + 1, V1 = v,D1 = d

]

≥
[ ∞∑

k=1

Rk(Xk, Vk, Dk, π−1(Xk, Vk, Dk))

∣∣∣∣∣X1 = z, V1 = v,D1 = d

]

for every sample path of the interarrival times and the vehicle speeds. In other words, for

every policy π, there exists a scheduling policy π−1 such that the random delay in deliv-

ering a file with z + 1 packets (and with policy π) is greater than or equal to the random

delay in delivering a file with z packets (and with a policy π−1). Taking expectation over

the sample paths, we have,

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))

∣∣∣∣∣X1 = z + 1, V1 = v,D1 = d

]

≥ E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π−1(Xk, Vk, Dk))

∣∣∣∣∣X1 = z, V1 = v,D1 = d

]

Now, taking infimum over the set of stationary Markov policies π, we have,

τ ∗(z + 1, v, d) = inf
π

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))

∣∣∣∣∣X1 = z + 1, V1 = v,D1 = d

]

≥ inf
π−1

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π−1(Xk, Vk, Dk))

∣∣∣∣∣X1 = z, V1 = v,D1 = d

]
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≥ inf
π

E{I,V }

[ ∞∑
k=1

Rk(Xk, Vk, Dk, π(Xk, Vk, Dk))

∣∣∣∣∣X1 = z, V1 = v,D1 = d

]
= τ ∗(z, v, d)

which is our desired result. The proof for the ordering of τ ∗ with respect to v and d

follows similar arguments and is omitted here.

Proof of Theorem 8.4.2.2

Proof: We know that τ ∗(x, v, d) satisfies the following DP given in (8.3),

τ ∗(x, v, d) :=
0 x = 0

min
{
E[I] + EI,V [τ ∗(x, V, (d− I)+)],max

(
s
v
, d
)}

x = 1

miny∈{0,1}
{
E[I] + EI,V [τ ∗(x− y, V, (max(d, I{y>0}

s
v
)− I)+)]

}
x > 1

Define π∗(x, v, d) as the stationary policy that chooses the minimizer of the right hand

expression in the above DP.

Consider the special case x = 1. The optimal policy chooses the minimum of

{
E[I] + E[τ ∗(1, V )],

s

v

}

Note that the first term is independent of v. And s
v

is a decreasing function of v. Hence,

we see that the optimal policy chooses to relay whenever

E[I] + E[τ ∗(1, V )] ≥ s

v

or, the optimal policy is a threshold policy with v.

Now, consider the case x > 1. The optimal policy chooses the minimum of the

following two terms,

{
E[I] + EI,V [τ ∗(x, V, (d− I)+),E[I] + EI,V

[
τ ∗
(
x− 1, V,

(
max

(
d,
s

v

)
− I

)+
)]}
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As before, the first term is independent of v. And, the second term is a non-increasing

function of v (since τ ∗(x, v, d) is a non-increasing function with d). Hence, we see that

the optimal policy is a threshold policy for x > 1 as well.



Chapter 9

Conclusion

In this thesis, we have studied a number of topics in modeling, analysis and optimization of

wireless networks. We have studied performance analysis as well as resource optimization

problems in a variety of wireless network scenarios, including WiFi networks, ad hoc (and

sensor) networks and vehicular networks.

In the first part of the thesis, we focussed on the performance analysis of IEEE

802.11(e) wireless local area networks. We studied the distributed coordination func-

tion (DCF) and the enhanced distributed channel access (EDCA) MAC of the IEEE

802.11(e) standard. We were interested in the saturation throughput performance of a

single cell IEEE 802.11(e) WLAN. We modeled both the pure collision channel as well as

frame capture at the receiver. Our analysis led us to a set of fixed point equations whose

solution would characterize the operating point.

In Chapter 2 (and in Chapter 4), we showed that the fixed point equations can have

multiple solutions, and in such cases, the system exhibits multistability and short-term

unfairness of throughput. Also, the fixed point analysis failed to characterize the average

system behaviour when the system has multiple solutions. Multistability was attributed

to the backoff parameter values (node response formula) and the capture probabilities in

the channel. We then obtained sufficient conditions (in terms of the backoff parameters of

the nodes and the number of nodes) under which the fixed point equations have a unique

solution (Theorem 2.5.2 in Chapter 2 and Theorem 4.3.1 in Chapter 4). We also showed

199
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that the default parameters of the IEEE 802.11(e) DCF (EDCA) standard satisfied these

sufficient conditions.

Then, using the fixed point analysis, in Chapter 3, we studied the throughput differen-

tiation provided by the different backoff parameters, including AIFS and multiple queues

per node. We observed that using initial backoff window, in general, a fixed through-

put ratio can be achieved. On the other hand, when using p and AIFS, the service is

significantly biased towards the high priority class, with the differentiation increasing in

favour of the high priority class as the load in the system increases. We also observed that

the effect of collision priority (due to virtual collision), where there are multiple access

categories per node, decreases when the number of nodes increases.

The fixed point approach is simply a heuristic that is found to work well in some cases.

Our work suggests where it might not work and where it might work. In a recent work

[11], the authors have proved that for random backoff algorithms, when the number of

sources grow large, the system is indeed decoupled, providing a theoretical justification

of decoupling arguments used in the analysis.

The fixed point framework developed by us for a single cell WLAN with saturated

queues has been extended to the case of unsaturated queues and multi-cell scenarios as

well. In [61], the throughput performance of an IEEE 802.11e infrastructure WLAN

carrying packet telephone calls, streaming video sessions and TCP file downloads has

been studied by extending the saturation throughput analysis discussed in Chapters 2

and 3. In [39], the authors study the performance of IEEE 802.11 multi-cell networks

comprising interfering co-channel cells using the fixed point approach.

In the second part of the thesis, we studied resource allocation and optimization prob-

lems for a variety of wireless network scenarios. In Chapter 5, for a dense wireless network

deployed over a small area, and with a network average power constraint, we showed that

single cell operation is throughput efficient in the asymptotic regime in which the net-

work average power is made large. We showed that, with a realistic path loss model

and a physical interference model (SINR based), the maximum aggregate bit rate among
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arbitrary transmit-receive pairs scales only as Θ(log(P̄ )), where P̄ is the network aver-

age power. Spatial reuse is ineffective and direct transmission between source-destination

pairs is the throughput optimal strategy which achieves the Θ(log(P̄ )) scaling. Also, for

moderate P̄ , when spatial reuse may be efficient, we showed in section 5.4 that spatial

reuse is restricted by the network dimensions, which affects the gains achievable using

cooperative communication techniques. Our result suggests single cell operation for all

practical network scenarios, when the ad hoc networks span a small area of few 1000 sq

mts. Single cell is easy to operate and when large network power is available, single cell

operation is optimal as well. We did not model a maximum node power constraint in our

work. We expect the scaling results to fare poorer with such constraints.

In Chapter 6, for a dense ad hoc wireless network operating as a single cell and with a

finite network power constraint, we studied the optimal hop length (routing strategy) and

power control (for a fading channel) that maximizes the network aggregate throughput.

For a fixed transmission time strategy, we studied the throughput maximizing schedule

under homogeneous traffic and MAC assumptions. We showed that there corresponds an

intrinsic aggregate packet carrying capacity at which the network operates at the opti-

mal operating point, independent of the average power constraint. We also obtained the

scaling law relating the optimal hop distance to the power constraint, and relating the op-

timal transport capacity to the power constraint (see Theorem 6.4.2). In Theorem 6.4.4

we also provide a characterisation of the optimal hop distance for cases in which the

fading density satisfies a certain monotonicity condition. In [62], the authors study the

problem of developing a distributed algorithm for nodes to adapt themselves towards the

optimal operating point. They first propose a distance discretization technique in which

the hop distance on the critical geometric graph is used as a distance measure. Using the

distance approximation, they then develop a distributed algorithm aimed to maximize

the transport capacity of the network in the sense of our framework presented in Chap-

ter 6. Interesting extensions to the throughput maximization problem include modeling

non-homogeneous traffic loads and channel conditions and studying non-saturated queue

scenarios.
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It is now well understood that in a multihop network, performance can be enhanced by

network coding, instead of just forwarding packets. For a two link slotted wireless network

employing a network coding strategy and with fading channels, in Chapter 7, we studied

the optimal power control and optimal exploitation of network coding opportunities that

minimizes the average power required to support a given arrival rate. We also obtained

the optimal power-delay tradeoff for the network (with the network coding strategy) and

showed that the minimum average queueing delay scales as Ω
(

1
v

)
for an excess average

power of O(v). In our work, we have focussed on a simple two link slotted wireless

network. Extensions to tandem networks is straight forward and the power-delay tradeoff

results still hold. Future work includes studying the capacity region of arbitrary wireless

networks with a network coding strategy and characterizing the network coding delay in

such scenarios.

Finally, in Chapter 8, we studied a delay minimization problem in a vehicular relay

network scenario. A stationary source node has a file to communicate to a stationary

destination node, and passing by vehicles are used as relays to transfer the file to the

destination. We considered both the finite file size case and the infinite file size case. In

the finite file size case, we obtained the expected total delay minimizing schedule using

a Markov decision process framework. We also obtained a simple sub-optimal scheduling

policy whose average delay is within a known bound from the optimal value (obtained from

the MDP formulation). In the infinite file size case, we studied the asymptotically optimal

tradeoff achievable between the queueing delay and the transit delay of the packets. By

defining the maximum throughput sustainable for a given transit delay constraint, we

showed that the average queueing delay of the system scales as Ω
(

1√
δ

)
for an excess

average transit delay of Θ(δ). In this work, we consider a single source-destination pair

with a single route between them. In future extensions, we can study multiple source-

destination pairs in an arbitrary network, allowing for different routing options to the

relaying nodes. Another interesting problem would be to permit the relay vehicles to

carry different amounts of data between the source-destination pair.
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