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Abstract—In orthogonal frequency division multiple access
downlink, the signal-to-interference-noise ratio (SINR) of every
subband at each user is estimated with the aid of pilots and
the channel quality (some function of SINR’s) is fed back to
the base station (BS). This information is utilized by the BS
for downlink scheduling. However, the SINR of the bands at
each user are correlated due to the common interfering BSs.
In this paper, we obtain the order statistics of band SINR’s
by considering the the co-channel interference and taking the
correlations of interference across the bands into consideration.
The order statistics are then used to analyse a best-m band
feedback scheme, in which every users reports the index of their
best-m bands to the BS. The BS utilizes this information and
does greedy allocation of the bands to the users. We observe that
utilizing the partial ordering of SINR’s for channel allocation
provides substantial gains over random allocation of bands to
the users even in the presence of interference.

I. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA)
is the ubiquitous downlink access technique in the next gen-
eration cellular standards. In OFDMA, the users utilize the
pilots to estimate the channel quality of a physical resource
block which we term as ”band” for convenience. The users
then report the channel quality (or some functions of them, for
e.g., exponential effective SNR mapping (EESM)) of the best
m-bands to the BS, which uses this information for scheduling
the users. Hence the order statistics of the SINR’s of different
bands are important in the design and the analysis of the
downlink scheduler.

Interference from the other BSs critically influence the joint
statistics of SINRs of the bands. At each user, while the small
scale fading from the interfering BSs is independent across
the bands, all the bands encounter the same path loss from the
interfering BSs. Hence the interference is correlated across the
bands.

In the earlier works, only the signal-to-noise ratio is consid-
ered and the interference from other BSs is generally neglected
in the analysis of order statistics. The main contribution of the
paper is obtaining the order statistics of SINR’s of the bands by
explicitly taking into account the interference and its correla-
tions across the bands. We use a spatial Poisson point process
[1], [2] for the BS locations. This spatial model was introduced
in [3] to model the interference in a cellular network. From
the order statistics, we observe that in wideband systems with
high frequency selectivity (and hence a large number of bands)
there is a substantial gain using the best band scheduling even
with interference. The obtained order statistics can potentially
be used to analyse various schedulers. As an application, we

consider a simple band allocation scheme in which the users
feedback the order of their best-m bands to the BS, and the
BS uses this information to greedily schedule the users.

The results closest to our work are presented in [4], [5]. The
order statistics of SNR in an OFDMA system, and the best-
m feedback scheme are analyzed, however the interference
from other BSs is neglected. Most performance evaluation
used simulations or resort to asymptotics [6], [7]. In [8] a
single-bit feedback scheme for OFDMA is analyzed, while in
[9] an approximation of the distribution of EESM is provided.
In [10] asymptotics and bounds on sum rate are provided for
an OFDMA system.

In Section II, we introduce the system model and assump-
tions. In Section III, we obtain the order statistics of the SINR

bands and we use these results in IV to obtain the coverage
probability for the best-m band channel allocation.

II. SYSTEM MODEL

The locations of the BSs are modeled by a spatial Poisson
Poisson process Φ of density λ. See Figure 1 for a typical
realization of the BS locations. The merits and demerits of
this model are discussed in [3]. For notational simplicity we
represent a node by its location. The path loss is given by
`(x) = ‖x‖−α where α is the path loss exponent and we
assume that α > 2.

A mobile user associates itself with the closest BS. So
the region served by a BS corresponds to its Voronoi cell
with respect to the other BSs. We consider an OFDMA based
downlink. In OFDMA, the BS clubs resources either in time
and frequency into resource blocks and allocates them to the
users depending on the channel conditions. We assume that
the resource blocks are clubbed into L bands. With the aid of
pilots, each user estimates the SINR in each band and feeds
back some of this information to the BS, using which the BS
allocates the bands to the users.

Since we are interested in the downlink performance, with-
out loss of generality, we consider a typical mobile user at
the origin denoted by o and analyze the SINR distribution in
different bands with respect to this user. The small-scale fading
(power) between the typical mobile and an interfering base
station x ∈ Φ in the i-th band is given by hx,i. We assume
Rayleigh fading, which implies that hx,i is exponentially
distributed. We also set E[hx,i] = 1, and assume that the fading
is independent across nodes and bands.

We denote the closest BS the typical user at o by z ∈ Φ.



Base stations: big dots.

Fig. 1. A typical realization of the BS locations distributed as spatial Poisson
point process and their associated cells.

The downlink SINR of the i-th band is given by

γi =
hz,i‖z‖−α

σ2 +
∑
x∈Φ\{z} hx,i‖x‖−α

,

where σ2 is the noise variance. We assume that all the BSs
transmit with unit power. A node is set to be in coverage if
its received SINR (in its scheduled band) is greater than a
threshold θ.

III. ORDER STATISTICS OF SINR

The order statistics of the γi are necessary for computing
the coverage probability of a user. It is easy to see that they
are identical random variables (the expressions of γi’s are
similar). If γi, i = 1 . . . L, were independent, computing
the ordered statistics is easy [11]. But the SINR’s are not
independent because of the common interferer locations Φ
which introduces correlates across all the γi.

In this section we obtain the ordered distribution of the
bands i.e., P(γi ≤ θ) given that γL ≥ γL−1 ≥ ... ≥ γ1

also accounting for the correlations in γi. We first begin with
the distribution of the best band γL and we will extended this
result to the other ordered bands in Lemma 1.

Theorem 1. The CDF of the maximum SINR band is given
by

P(L, θ) =

L∑
k=0

(
L

k

)
(−1)k·∫ ∞

0

2πλre−kθr
ασ2−πλr2c(α,k,θ)dr, (1)

where

c(α, k, θ) = 2F1

(
k,
−2

α
, 1− 2

α
,−θ

)
,

and 2F1(a, b, c, z) is the standard hypergeometric function1.

Proof: See Appendix A

1
2F1(a, b, c, z) =

Γ(c)
Γ(b)Γ(c−b)

∫ 1
0
tb−1(1−t)c−b−1

(1−tz)a dt.

The result in Theorem 1 can be simplified in some special
cases. For example, in an interference-limited regime i.e., σ2 =
0, it is easy to see that the integral in (1) can be simplified to

P(L, θ) =

L∑
k=0

(
L

k

)
(−1)k

c(α, k, θ)
.

Observe that the distribution does not depend on the density
of the BSs. Also, for α = 4 it can be shown that

P(L, θ) = 1 +

L∑
k=1

(
L

k

)
(−1)kπ3/2λ

2
√
kθσ2

eη
2
k erfc (ηk) ,

where ηk = c(4,k,θ)πλ

2
√
kθσ2

. In Figure 2, the CDF P(L, θ) is plotted
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Fig. 2. The outage probability P(L, θ) as a function of θ for different L
with α = 4, σ2 = 0.1 and λ = 0.25. The average distance of the nearest BS
is (2
√
λ)−1 and hence σ2 = 0.01 correspond to an average receive signal-

to-noise ratio of (16λ2σ2)−1 ≈ 20dB. The outage probability curve with no
interference and a single band (denoted as ”Noise Limited”) is also shown.

as a function of θ for different L. As expected, when the
number of bands increase, the outage probability for the best
band decreases. Also observe the diminishing returns in using
40 bands over 10 bands. For example with θ = 1 (0 dB) SINR
threshold, there is a 80% reduction in the outage when using
20 bands compared to an additional 10% reduction by using
30 extra bands. We now compute the distribution of all the
other ordered bands.

Lemma 1. Let γL ≥ γL−1 ≥ . . . ≥ γ1, then the probability
that P(γn ≤ θ) which we denote by P(n, θ) is given by

P(n, θ) =

L∑
k=n

(
L

k

) k∑
j=0

(
k

j

)
(−1)j

·
∫ ∞

0

2πλre−(L−k+j)θrασ2

e−πλr
2c(α,L−k+j,θ)dr.

Proof: From the proof of Theorem 1, the SINR’s are
independent and identical conditioned on the underlying node
locations Φ. Denote the common CDF of the SINR conditioned
on Φ as F (x). Then the ordered statistics [11] equal

P(γn ≤ θ | Φ) =

L∑
k=n

(
L

k

)
F (θ)k(1− F (θ))L−k.



As in the proof of Theorem (1) we set F (θ) = 1 − g(Φ, θ).
Averaging over Φ, we obtain

P(γn ≤ θ) =

L∑
k=m

(
L

k

)
E
[
(1− g(Φ, θ))kg(Φ, θ)L−k

]
,

which after binomial expansion equals,

P(γn ≤ θ) =

L∑
k=m

(
L

k

) k∑
j=0

(
k

j

)
(−1)jE[g(Φ, θ)L−k+j ].

Using (3) and substituting for E[g(Φ, θ)L−k+j ], we obtain the
result.
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Fig. 3. The CDF P(n, θ) as a function of θ for different n with L = 10
bands, σ2 = 0 and α = 4.

As before, the above expression can be further simplified in
an interference limited regime or σ2 = 0 and equals,

P(n, θ) =

L∑
k=n

(
L

k

) k∑
j=0

(
k

j

)
(−1)j

c(α,L− k + j, θ)
.

In Figure 3, the CDF’s of the different bands are plotted, from
which we can immediately infer the gain in using the best
band over the worst band. All the joint distributions of the
ordered γi’s can be obtained using the techniques presented
in the proofs of Theorem 1 and Lemma 1. In the next lemma
we quantify the SINR gain in using the best band over the
worst band. The gain is defined as G = γL/γ1. This metric
quantifies the advantage of scheduling the best band over a
random allocation. For simplicity, we just consider the no-
noise case. We now derive the CDF of G.

Lemma 2. When σ2 = 0, the distribution of the ratio of the
SINR of the best band to that of the SINR of the worst band
is given by

P(G ≤ t) = L

L−1∑
k=0

(
L− 1

k

)
2(−1)L−1−k

α− 2
·∫ ∞

0

AF1

(
1− 2

α , L− k + 1, k, 2− 2
α ,−a,

−a
t

)
AF1

(
− 2
α , L− k, k, 1−

2
α ,−a,

−a
t

)2 da

for t > 1. In the above expression, AF1 denote the Appell
hypergeometric function2.

Proof: See Appendix B.
In Figure 4, the CDF of the gain G is plotted. We observe

that with high probability the gain is greater than 10. In the

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

P
IG

>
t

M

CDF of the Gain G for L=10

Fig. 4. The CDF of the gain G for L = 10 bands, σ2 = 0 and α = 4.

next section we utilize the order statistics developed in this
section to analyze a simple channel allocation policy of which
the best band scheduling is a special case. While we focus on
coverage, other metrics like ergodic rate can also be computed
using the order statistics.

IV. BEST-m CHANNEL ALLOCATION POLICY

Using pilots, every mobile user will be able to estimate the
SINR in each band. So a mobile user can order the quality of
his bands based on the computed SINR and report the order
to the BS. We assume each mobile user reports the order of
m best bands. In addition, each user usually reports an expo-
nential effective SNR mapping (EESM) value (a scalar) that
can be used by the BS to estimate the ”quality” of the bands
[9]. This information is required for rate allocation. However,
in the current paper we do not consider this information and
is a subject of future work.

In this section for simplicity, we assume that the number of
users being served by a BS is equal to the number of bands
L. The BS receives this band ordering from all its users and
allocates the bands in the following greedy manner.

1) The BS first considers the best bands of all the users.
For each band bi, i = 1, . . . , L, the BS lists all the users
who reported bi as their best band. If only a single user
reported bi as its best band, it allocates the band to that
user. If multiple users reported bi as their best band, the
BS randomly picks one of these users and allocates the
band to that user.

2) The BS then considers only the unallocated bands and
the second best bands of the remaining users (users
whose best band was not allocated) and repeats the
above procedure with respect to the second best band.

2AF1(α, β, β′, γ, x, y) =
Γ(γ)

Γ(α)Γ(γ−α)

∫ 1
0 u

α−1(1 − u)γ−α−1(1 −
ux)−β(1− uy)−β′du. Evaluated in Mathematica as AppellF1.



3) This allocation continues till m-times with the BS fo-
cusing on the i-th best bands of the users in the i-th
time.

For illustration, let L = m = 3, i.e., there are 3 bands, 3 users,
and the users report their entire band order. Suppose {1, 2, 3},
{3, 2, 1}, {3, 2, 1} are the reported band orders of the three
users u1, u2, u3. The BS first considers the best bands of the
three users which are 1 for u1, 3 for u2 and 3 for u3. Hence
the BS allocates frequency 1 to u1. Since both users u2 and
u3 reported band 3 as their best band, it randomly picks one
of the user to allocate band 3. Let us suppose the band 3 is
allocated to user 3. Observe that band 2 is not yet allocated to
any user. The BS now considers the second best band of the
remaining users which is u2. Its reported second best band is
1, which was allocated to user u1. So the BS now considers
the third best band and the remaining users. For the user u2

the third best band is 2 which was not allocated earlier. So the
BS allocates the band 2 to u2.

From the allocation algorithm, it is easy to see that if m <
L, then some of the users might not be allocated any frequency
bands and also some of the frequency bands might not be
allocated to any user. However, if the number of reported bands
m = L, then every users are allocated some frequency band.
The following lemmas show that the band ordering of various
users is independent, a fact we will be using to analyse the
allocation probabilities.

Lemma 3. For any user, any order of the bands is equally
likely, i.e., the SINR order of the bands is equally likey to be
any one of the permutations of {1, ...., L}.

Proof: The result is obvious when conditioned on the
location of the BSs Φ, since the fading coefficients are
independent. Hence

P(Order = (i1, ...., iL)| φ) =
1

L!
.

Averaging over φ we get the result.

Lemma 4. The band ordering across users is independent.

Proof: Let O1 denote the band order of user 1 and
O2 the band order of user 2. Since the fading variables are
independent across nodes and bands, conditioned on the point
process we have

P(O1 = (i1, ..., iL), O2 = (j1, ...jL)| φ)

= P(O1 = (i1, ..., iL)|φ)P(O2 = (j1, ...jL)| φ)
(a)
=

1

L!

1

L!
,

where (a) follows from Lemma 3. Averaging over φ we obtain
the result.

Consider a typical user (randomly picked user from the L
users) u and let Pi denote the probability that the user is
allocated his i-th best band. So for m < L,

∑m
i=1 Pi < 1, and

the probability that a user is not scheduled is 1 −
∑m
i=1 Pi.

However,
∑L
i=1 Pi = 1.

From the allocation policy, it can be easily seen that
evaluation of Pi is purely combinatorial. In fact Pi is a function
of only L and m and does not depend on the actual SINR

values, but just the band ordering of the users. However from
Lemma 3 and 4, we observe that for a user any ordering is
equally likely and the ordering is independent across users.
The allocation strategy is very similar to that of the Balls
and Urns problem which has been studied extensively. For
example, let us consider the first step in the allocation, i.e.,
the BS allocating the best band. Consider the L frequency
bands as L urns. The best band of each user is equally likely
and independent of the other users. Hence we can think of
each user placing a ball (with his number/id) in one of the
urn independently and uniformly. So the probability that a
typical user u is allocated his best band can be computed by
analysing the simple balls and urns problem, and from basic
combinatorics can be computed to be

P1 =

L−1∑
a=0

1

1 + a

(
L− 1

a

)(
1

L

)l(
1− 1

L

)L−1−a

,

where 1/(1 + a) is the probability of the typical user u being
selected given that there are a users in one bin (over and above
the particular user in consideration). The remaining terms are
the probability of there being a users. The above expression
can be simplified to P1 = 1−

(
1− 1

L

)L
. So as the number of

users/bands L increase to infinity, the probability that a user is
allocated his best band approaches 1− e−1 ≈ 0.63. Similarly,
the probability that the user is allocated i-th best band can
be computed by looking at the distribution of the empty bins
[12]. Also, for m < L the probability mass function (PMF) of
the number of unallocated bands can be computed. However,
this is a tedious recursive exercise in combinatorial probability
that leads to large expressions that offer no additional insight.
Instead we obtain P1, ...PL using simulations. See Figure 5
for the distribution when L = 10. Observe that the obtained
distribution works for any m ≤ L by just considering the first
m terms of the distribution.
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Fig. 5. PMF Pi, i = 1, ..., 10 for L = 10 bands. Observe that with a high
probability a user will be allocated one of his two best bands. Also P1 = 0.65
which is very close to 0.63 the L→∞ limit.

A. Coverage Probability
The coverage probability of an user depends on the band

that is provided by the BS using the allocation scheme
described in the previous section. If the user is allocated his



best channel, then the coverage probability is P(γL ≥ θ)
(recall that γL ≥ γL−1 ≥ ... ≥ γ1 are the ordered SINR

values). Instead if the user is allocated his second best channel,
then the coverage probability is P(γL−1 ≥ θ). Hence is easy
to observe that the probability of coverage for a typical is
Pc =

∑m
i=1 P(γL−i+1 ≥ θ)Pi, which equals

Pc =

m∑
i=1

(1− P(L− i+ 1, θ))Pi.

For example, for L = 10 and m = 2, from Figure 5 we have
Pc ≈ 0.65P(γL ≥ θ) + 0.126P(γL−1 ≥ θ). The probabilities
P(L− i+ 1, θ) are provided by Lemma 1.

B. Comparison with random frequency allocation

We will now evaluate the outage probability when the BS
randomly allocated a frequency band to each user instead of
trying to allocate the best band. In this case, it is easy to
see that the coverage probability follows from Theorem 1, by
setting L = 1. This is because, we can consider a typical user
and allocate him some random band, which amounts to setting
the number of bands to 1. So

Pr =

∫ ∞
0

2πλre−θr
ασ2

e−πλr
2c(α,1,θ)dr,

which without noise equals c(α, 1, θ)−1. This result equals
the coverage result presented in [3]. In Figure 6, the coverage
probability is plotted as a function of the SINR threshold θ
for different m. Also the coverage probability with random
allocation Pr is plotted. We observe that even 2-best band
feedback increases the coverage over a random allocation.
Also observe the diminishing returns after m > 5 which is
more evident from Figure 7. Hence even a little feedback in
terms of band ordering can provide great improvements in
coverage probability.
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Fig. 6. Coverage probability Pc versus the SINR threshold θ for the no-noise
case σ2 = 0 and α = 4. The multiple curves correspond to different values
of m, i.e., the number of best bands that a user feeds back. Also the coverage
probability Pr with random allocation is plotted.
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APPENDIX A
PROOF OF THEOREM 1

Proof: The outage probability of the typical node is given
by

P(L, θ) = P(max{γ1, . . . , γL} ≤ θ).

which implies

P(L, θ) =P
( hz,1‖z‖−α

σ2 +
∑
x∈Φ\{z} hx,1‖x‖−α

≤ θ, . . . ,

hz,L‖z‖−α

σ2 +
∑
x∈Φ\{z} hx,L‖x‖−α

≤ θ
)



Since hz,i the fades across different bands to the desirable BS
are independent, we have

P(L, θ) = E
L∏
k=1

1− e−θ‖z‖
α(σ2+

∑
x∈Φ\{z} hx,k‖x‖

−α),

where the expectation is with respect to all the other random
variables, i.e., z, Φ and the fades of the interfering BSs.
Converting the exponent of sums into product of exponents,
we obtain

P(L, θ) = E

 L∏
k=1

1− e−θ‖z‖
ασ2 ∏

x∈Φ\{z}

e−θ‖z‖
αhx,k‖x‖−α

 .
Sine hx,k are independent for different k and x, the expectation
with respect to these variables can be moved inside as

E

 L∏
k=1

1− e−θ‖z‖
ασ2 ∏

x∈Φ\{z}

Ehx,k [e−θ‖z‖
αhx,k‖x‖−α ]

 .
From the Laplace transform of an exponential random vari-
able, it follows that P(L, θ) = E

∏L
k=1 1− g(Φ, θ), where

g(Φ, θ) = e−θ‖z‖
ασ2 ∏

x∈Φ\{z}

1

1 + θ‖z‖α‖x‖−α
. (2)

Using the binomial expansion and moving the expectation
inside the summation,

P(L, θ) = 1 +

L∑
k=1

(
L

k

)
(−1)kEg(Φ, θ)k.

We now evaluate E[g(Φ, θ)k], by first evaluating
E[
∏
x∈Φ\{z}(1 + θ‖z‖α‖x‖−α)−k]. Using the probability

generating functional of the Poisson point process [1] and the
strong Markov property of the PPP, the above expectation is

exp

(
−λ2π

∫ ∞
‖z‖

(
1− 1

(1 + θ‖z‖αx−α)k

)
xdx

)
,

which after further simplification equals,

exp

(
−λ2πθ2/α‖z‖2

∫ ∞
θ−1/α

(
1− 1

(1 + x−α)k

)
xdx

)
.

The inner integral can be further simplified as

exp
(
−πλ‖z‖2(−1 + c(α, k, θ)

)
,

where

c(α, k, θ) = 2F1

(
k,
−2

α
, 1− 2

α
,−θ

)
.

Hence

E[g(Φ, θ)k] = exp
(
−kθ‖z‖ασ2 − πλ‖z‖2(−1 + c(α, k, θ)

)
.

(3)

Using the distribution of the nearest neighbour distance in a
PPP we now average out the distance ‖z‖ which is given by
f(r) = 2πrλ exp(−λπr2) [1], we obtain the result.

APPENDIX B
PROOF OF LEMMA 2

Proof: We have

P(G ≤ t) = E[P(G ≤ t |Φ)]

We first consider the conditional probability P(G ≤ t |Φ), and
finally average over the location of nodes as in the previous
lemma. From the theory of ordered random variables [11] and
with basic algebra it follow that,

P(G ≤ t |Φ) = L

∫ ∞
o

[F (a/t)− F (a)]L−1f(a)da,

where F (a) = 1− g(Φ, a) and f(a) is the derivative of F (a).
For notational simplicity let Φ̂ = Φ\{z}. Using the chain rule
and (2), the derivative f(a) can be computed to be,

f(a) =
∑
y∈Φ̂

‖z‖α‖y‖−αηz(y, a)2g(Φ̂ \ {y}, a),

where ηz(x, a) = (1 + a‖z‖α‖x‖−α)−1. Using binomial
expansion and averaging over the point process we obtain,

P (G ≤ t ) = L

L−1∑
k=0

(
L− 1

k

)
(−1)L−1−k·∫ ∞

0

E[g(Φ, a/t)kg(Φ, a)L−1−kf(a)]da.

We now evaluate the inner expectation. Observe that g(Φ, a) =
ηz(y, a)g(Φ \ {y}, a). The expectation equals

E
[∑
y∈Φ̂

‖z‖α‖y‖−αηz(y, a)L−k+1ηz(y, a/t)
k·

g(Φ̂ \ {y}, a)L−kg(Φ̂ \ {y}, a/t)k
]
.

Using Cambells Mecke theorem [1], the above expectation can
be expressed as δ(z, a)E[g(Φ̂, a)L−kg(Φ̂, a/t)k], where

δ(z, a) = 2πλ

∫ ∞
‖z‖
‖z‖αy−α+1ηz(y, a)L−k+1ηz(y, a/t)

kdy

which can be further simplified to

2πλ‖z‖2

α− 2
AF1

(
1− 2

α
,L− k + 1, k, 2− 2

α
,−a, −a

t

)
.

As in the above lemma, E[g(Φ̂, a)L−kg(Φ̂, a/t)k] equals

e−λ2π‖z‖2
∫∞
1 (1−η1(x,a)L−kη1(x,a/t)k)xdx.

The inner integral can be further simplified to
1
2

(
−1 + AF1

(
− 2
α , L− k, k, 1−

2
α ,−a,

−a
t

))
. Combining

everything and averaging out the distance ‖z‖, we obtain

E[g(Φ, a/t)kg(Φ, a)L−1−kf(a)] =

2

α− 2

AF1

(
1− 2

α , L− k + 1, k, 2− 2
α ,−a,

−a
t

)
AF1

(
− 2
α , L− k, k, 1−

2
α ,−a,

−a
t

)2 .


