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Abstract—In this paper we analyze a multiple-input-multiple-
output interference channel where nodes randomly distributed
on a plane utilize interference alignment to reduce the point-to-
point outage. We model the spatial distribution of the nodes as
a spatial Poisson cluster point process with equal sized clusters.
Each cluster uses intra-cluster interference alignment to suppress
interference. We link the accuracy of channel state information
to the distance between the nodes, i.e., for a fixed SNR, the
quality of CSI degrades with increasing distance. Accounting for
the inter-cluster unaligned interference, we compare intra-cluster
interference alignment with open-loop spatial multiplexing. In
our analysis we find common system setups where the benefits
of using interference alignment over spatial multiplexing degrade
the most due to the imperfect channel state information.

I. INTRODUCTION

Interference alignment (IA) achieves the highest multiplex-
ing gain attainable to date in the K-user multiple-input-
multiple-out (MIMO) interference channel [1]. IA confines
the interference to a subspace at each receiver such that an
interference-free subspace becomes available for the desired
signal transmission. Except for blind IA techniques [2], [3],
which usually attain a lower multiplexing gain, IA requires
cooperation between the transmitting/receiving nodes using
global channel state information (CSI) [4] or some form
of channel reciprocity. In practical scenarios, where CSI is
estimated and fed back to the other nodes, the accuracy of
the available CSI plays a crucial role in determining the
performance of IA [5]. Hence IA is not necessarily the optimal
transmission technique in practice. In addition, as the number
of available antennas at each node is limited, the number of
nodes that can cooperate with each other through IA is also
limited [1]. Further, the overheads of cooperative IA grow with
the number of users, implying that in many cases it is most
efficient to coordinate small groups of users [6]. Consequently
it is of interest to investigate the performance of IA networks
where a cluster of nodes is cooperating.

Most work on performance of interference alignment is
confined to single-cluster performance analysis effectively ig-
noring the impact of the rest of the network on the distribution
of the signal and/or interference (see [5], [7], [8] and references
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therein). In mobile ad hoc and cellular networks, single cluster
analysis does not capture the impact of interference from
other nodes in the network which the performance of any
PHY/MAC protocol is directly linked to [9]. In [10] the
spatial distribution of nodes is considered but the accuracy
of the acquired CSI is ignored. This effectively favors IA over
transmission techniques which either do not require CSI at
the transmitters or are less sensitive to CSI imperfections [5,
Section V].

Assuming a fixed transmitter-receiver distance, increasing
the density of the nodes decreases the distance between two
interfering nodes so fewer resources are consumed for training
the cross links. The channel state information at each node
therefore becomes more accurate which helps interference
alignment inside each cluster. A higher density of the nodes,
however, results in more unaligned interference from other
clusters and decreases the sum-rate of each cluster. Quan-
tifying this fundamental trade-off is a goal of this paper
where we focus on establishing a link between the point-
to-point probability of outage, the density of the nodes, the
interference at each node, and the effect of varying received
power on the accuracy of the estimated CSI for MIMO IA in
a clustered ad hoc network. We also compare IA with open-
loop spatial multiplexing (SM) to gain further insights into
operating regions where employing complicated IA approach
is beneficial.

II. SYSTEM MODEL

The spatial locations of the nodes, Φ, are modeled as a
planar Newman-Scott cluster point process [11], which is a sta-
tionary and isotropic point process with a parent homogeneous
poison point process (PPP) of density λ̃p identifying cluster
centers. We assume clusters randomly access the channel with
probability PA effectively reducing the density of this PPP to
λp=PAλ̃p. Around each cluster center, K transmitters with N
antennas each are uniformly distributed in a circle of radius R.
The receivers, with N antennas each, are not part of the point
process Φ and are assumed to be randomly located at distance
Dr from each transmitter. Also, the receiver of a transmitter at
x is denoted by x̂. An instance of the nodes’ location is shown



100 200 300 400 50050

100

150

200

250

300

meters

m
et

er
s

Transmitter Location Typical Receiver

R

Dr

Fig. 1. An instance of the transmitter’s distribution with K = 3.

in Fig. 1. Consider a typical cluster at the origin, Ψo. The
received signal at receiver x̂, x ∈ Ψo, is

yx̂ =
∑
z∈Ψo

√
gx̂zHx̂zFz s̃z + Ic + zx̂, (1)

where Ic =
∑
z∈Φ/Ψo

√
gx̂zHx̂zFz s̃z is the inter-cluster

interference, gx̂z and Hx̂z are the pathloss and the matrix
of channel coefficients of a block fading channel between
the transmitter z and the receiver x̂, Fz is the precoder at
transmitter z (we assume F∗zFz = I) with the transmitted
signal s̃z such that E{s̃∗z s̃z} = P , and zx̂ ∼ CN(0, NoI)
is the AWGN. In every cluster, channel state information is
estimated at the receivers as in [12] and conveyed to all other
nodes of the cluster using an error-free instantaneous feedback
link. Thus, the MIMO channels can be modeled as

Hx̂z =
√

1− β2
x̂zH

w
x̂z + βx̂zEx̂z x, z ∈ Ψo, (2)

where Hw
x̂z is the estimated channel, Ex̂z represents the esti-

mation error with i.i.d. terms distributed as CN(0, 1), and β2
x̂z

is the normalized variance of the estimation error. Assuming
a block fading channel model of length T , we set βx̂z to be
related to the average received SNR at each link, γx̂z , as [12,
Section II.B]

β2
x̂z =

1

1 + Ttγx̂z
=

1

1 + Tt
Pgx̂z
No

, (3)

where Tt is the number of channel instances spent for training
Hx̂z . We also assume that Hw is used to construct the pre-
coders/equalizers and nodes effectively ignore the imperfection
in CSI.

III. INTRA-CLUSTER INTERFERENCE ALIGNMENT

At each cluster, a K-user system of IA is feasible if there
exists a set of matrices W = {Wẑ|z ∈ Ψ0} such that, given
the received signal of (1), the following constraints are met [4]{

rank (Wx̂Hx̂xFx) = Ns
Wx̂Hx̂zFz = 0 ∀z 6= x

∀x, z ∈ Ψo, (4)

where Wx̂ is the combining filter used at receiver x̂ and Ns
is the number of interference-free streams each transmitter

can send to its receiver. The linear equalizer presented in [5]
and the projection matrix presented in [13, Section III.A] are
examples of a possible receive filter in (4). We assume the set
of {N,Ns,K} constitutes a feasible IA system [14].

A. Characterizing the SINR

From (4), interference at receiver x̂ is confined to an N−Ns
dimensional subspace. Let [{·}] represent horizontal concate-
nation of the elements in {·}. Then, as IA precoders/equalizers
are constructed using Hw as given by (2), the N × (K−1)Ns
matrix of Jx̂ = [{Hw

x̂zFz|z 6= x, z ∈ Ψo}] spans an N−Ns
dimensional subspace. Let the singular value decomposition of
Jx̂ be UJx̂ΣJx̂V

∗
Jx̂

and let the rows of Wx̂ be the columns
of UJx̂ corresponding to zero singular values in ΣJx̂ . As Wx̂

is independent of Hw
x̂xFx, it satisfies the conditions in (4) and

is a valid zero-forcing (ZF) equalizer for IA. Using this ZF
receiver, the post processing SINR of the nth stream at receiver
x̂ is

γIA
x̂,n=

gx̂x(1− β2
x̂x)h̃∗x̂xh̃x̂x

NsNo
P +

∑
z∈Ψo

gx̂zβ
2
x̂zẽ
∗
x̂zẽx̂z︸ ︷︷ ︸

Ie

+
∑

z∈Φ/Ψo

gx̂zh̃
∗
x̂zh̃x̂z︸ ︷︷ ︸

Ii

, (5)

where for all z ∈ Φ, h̃x̂z = (e∗nWx̂H
w
x̂zFz)

∗ and ẽx̂z =
(e∗nWx̂Ex̂zFz)

∗, and en is the nth column of an Ns × Ns
identity matrix. Let entries of Hx̂z and Ex̂z be i.i.d. Gaussian
terms. Due to the doubly unitarily invariance of the Gaussian
distribution, h̃x̂z and ẽx̂z will be column vectors of length Ns
with i.i.d. Gaussian terms.

B. Probability of Outage

In (5), as h̃∗x̂zh̃x̂z and ẽ∗x̂zẽx̂z are i.i.d. Γ(Ns, 1) random
variables, we denote them by hx̂z for notational simplicity.
Let the transmitter corresponding the typical receiver be at the
origin and denote it by o. The probability of success is

PIA
s (θ) = P!o(SINR(o, ô) > θ), (6)

where P!o represents the reduced Palm probability measure
and θ is the SINR threshold. Theorem 1 gives a closed-form
expression of (6) when nodes of each cluster cooperate through
IA.

Theorem 1. For the system model described in Section II, the
success probability with IA equals

PIA
s (θ) =

Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s NsNo

P L!o
Ie

(s)LIi(s)
∣∣∣
s=η

, (7)

where L!o
Ie

(s) and LIi(s) are given in (11) and (13) respec-
tively, and η = θ

gôo(1−β2
ôo)

.

Proof: Since hôo ∼ Γ(Ns, 1), its complementary cumu-
lative distribution function (CCDF) is F (x) = Γ(Ns,x)

Γ(Ns)
=



e−x
∑Ns−1
k=0

xk

k! . Hence, as Ie and Ii in (5) are independent,
(6) equals

PIA
s =

Ns−1∑
k=0

ηk

k!
E!0

[(
NsNo
P

+Ie+Ii

)k
e−η(

NsNo
P +Ie+Ii)

]
,

(a)
=

Ns−1∑
k=0

(−η)k

k!

dk

dsk
E!oe−s(

NsNo
P +Ie+Ii)

∣∣∣
s=η

,

where (a) follows from the properties of the Laplace trans-
form. The reduced Palm probability of a Newman-Scott cluster
process is P!o = P ∗ C !o where ∗ denotes superposition [11].
This implies that assuming a point of the cluster process at the
origin equals the original point process Φ and an additional
cluster which has a point at the origin. Also this additional
cluster at the origin is independent of the original process Φ
and we represent this cluster by Ψo. So we have

PIA
s =

Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s NsNo

P Ee−sgôoβ
2
ôohôoL!o

Ie
(s)LIi(s)

∣∣∣
s=η

,

where L!o
Ie

(s) is the Laplace transform of the intra-cluster inter-
ference with respect to the reduced Palm measure and LIi(s)
is the Laplace transform of the inter-cluster interference. Since
hôo is exponentially distributed, using (3),

Ee−sgôoβ
2
ôohôo =

TtP
No

+Dα
r

s+ TtP
No

+Dα
r

. (8)

We now evaluate L!o
Ie

(s)

L!o
Ie

(s) = E!o

[
e
−s

∑
z∈Ψo

gôzβ
2
ôzhôz

]
= E!o

[ ∏
z∈Ψo

e−sgôzβ
2
ôzhôz

]

= E!o

[ ∏
z∈Ψo

(
1

1 + sgôzβ2
ôz

)Ns]
(9)

= E!o

 ∏
z∈Ψo

(
TtP
No

+ ‖z − ô‖α

s+ TtP
No

+ ‖z − ô‖α

)Ns . (10)

To derive (9) the Laplace transform of hôz was used and in
the last step we have substituted ‖x‖−α for the path loss.
Observe that (10) is the probability generating functional of
the representative cluster Ψo with respect to its reduced Palm
probability. We use the following result from [15, Lemma 1]
which we state for completeness. For any function f(x) :
R2 → R+,

E!o
∏
x∈Ψo

f(x) =
1

πR2

∫
A

(
1

πR2

∫
A

f(x− y)dx

)K−1

dy,

where A = B(o,R). Using the above result, we obtain

L!o
Ie

(s) =

∫
B(o,R)

 1

πR2

∫
B(o,R)

(
TtP
No

+‖x−y−ô‖α

s+ TtP
No

+‖x−y−ô‖α

)Ns
dx

K−1

dy. (11)

We now focus on LIi(s)

LIi(s) = E!o
[
e−s

∑
z∈Φ gôzhôz

]
= E!o

[∏
z∈Φ

(
1

1 + s‖x− ô‖−α

)Ns]
. (12)

To calculate (12), we use the following result which character-
izes the probability generating functional of a Poisson cluster
process [11]

E
∏
x∈Φ

f(x)=exp

− λp ∫
R2

1−

(
1

πR2

∫
B(o,R)

f(x− y)dx

)K
dy

.
Using the above probability generating functional, we obtain

LIi(s) =exp

(
−λp

∫
R2

1−

[
1

πR2

∫
B(o,R)

(
‖x−y‖α

s+‖x−y‖α

)Ns
dx

]K
dy

)
. (13)

IV. SPATIAL MULTIPLEXING

An alternative strategy to interference alignment is spatial
multiplexing where the channels are time-shared with TDMA.
We analyze open-loop spatial multiplexing where at each
cluster only a single transmit/receiver pair communicate N
streams without precoding. Following (2), the received signal
at a typical receiver can be written as

yx̂=gx̂x

(√
(1−β2

x̂x)gx̂xH
w
x̂x+βx̂xEx̂x

)
s̃x+Ic+zx̂,

where Ic is defined in (1) with the difference that each cluster
only has a single transmitter. In this case, the point process
of the transmitters simplifies to the Poisson point process of
the parent points. When βx̂x = 0, after a zero-forcing receiver
based on Hx̂x, SINR of the nth stream at a typical receiver
can be written as

γSM
x̂,n=

gx̂x

e∗n(H
w
x̂x)
−1

(
NNo
P +

∑
z∈Φ/Ψo

gx̂zHx̂zH∗x̂z

)
(Hw

x̂x)
−∗

en

, (14)

where we have assumed the interference channels from differ-
ent transmitters are independent. The probability of success in
this case is given by [16]

PSM
s (θ) = P!o(γSM

x̂,n > θ)

= exp

(
−λpθ

2
αD2

rJ− θDα
r

NNo
P

)
, (15)

where J =
πΓ(N+ 2

α )Γ(1− 2
α )

Γ(N) . With imperfect CSI, we assume
the receivers compute their zero-forcing receivers based on
the estimated channel values and ignore the estimation error.
Then, the denominator of (14) will have an additional term
of gx̂xβ

2
x̂xEx̂xE

∗
x̂x inside the parenthesis. As the channel

estimation error is independent of the estimated channel and
the transmitter/receiver distance is fixed to Dr, this additional
term is effectively increasing the noise spectral density from



No to No + Pgx̂xβ
2
x̂x. As the numerator of (14) also changes

to gx̂x
(
1− β2

x̂x

)
, in case of imperfect CSI as in (2), the

probability of success at a typical receiver for any of the
streams changes from (15) to

PSM
s (θ) = P!o(γSM

x̂,n > θ)

= exp

(
−λpθ̃

2
αD2

rJ− θ̃Dα
r

NÑo
P

)
, (16)

where θ̃ = θ
1−β2

x̂x
and Ño = No + Pgx̂xβ

2
x̂x.

V. SIMULATION

In this section, for simplicity, we focus on the case of K=3,
N=2, and Ns=1. To further reduce the number of involved
variables, we set R to Dc=0.5λ0.5

p (average distance between
the cluster centers) and set Dr to R

5 . In this way, by increasing
Dc, all the nodes move away from each other. We set No
to 1 and P

No
to 30dB. We also assume all the clusters are

transmitting simultaneously. In the forthcoming discussions,
perfect channel estimation corresponds to very large values of
the training period, Tt, where β is assumed to be 0 and the
worst channel estimation corresponds to assigning the least
number of channel instances for training. i.e. Tt = N = 2.
Note that for perfect CSI, (8) and (11) are both equal to 1.

Assume perfect channel state information. The probability
of successful transmission given by (7) as a function of
average distance between the cluster centers and varying SINR
thresholds is shown in Fig. 2. It appears that when probability
of successful transmission is the metric of interest, IA can
be utilized for dense and moderately dense networks. The
important question, however, is whether using a much more
simpler transmission techniques, such as open loop spatial
multiplexing, could yield to a better (or comparative) perfor-
mance. Using (7) and (15), the difference between the proba-
bility of successful transmission of IA and SM (PIA

s − PSM
s )

is shown in Fig. 3. As can be seen, for very dense networks,
SM outperforms IA which can be explained by the reduced
inter-cluster interference due to only a single transmit/receiver
pair being active at each cluster. In addition, for moderately
dense networks, IA outperforms SM.

Now assume Tt = N = 2 where the channel estimation
errors have the highest variance. The questions of interest
are i)how much the performance of IA will be affected by
introducing the imperfect CSI and ii)how does the relative
performance between IA and SM change in this scenario. For
the same range of Dc and θ as the previous plots, the decrease
in the probability of successful transmission for IA when the
training period is lowered to 2 is shown in Fig. 4. Probability of
successful transmission for IA remains unchanged for dense
networks but is reduced for moderate node densities. Using
(7) and (16), PIA

s − PSM
s is also shown in Fig. 5 where, as

expected, SM has a better performance even for a larger range
of the node densities and, as hinted by Fig. 4, IA has lost most
of its privileges at moderate node densities. As a reference, the
accuracy of (7) when Tt = 2, as obtained through comparing
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Fig. 2. Probability of successful transmission for IA as a function of the
average distance between the cluster centers and the SINR threshold with
perfect CSI.
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Fig. 3. Difference between the probability of successful transmission of IA
and SM, PIA

s − PSM
s , as a function of the average distance between cluster

centers and the SINR threshold for perfect CSI.

with numerical results, is shown in Fig. 6 where the worst case
error is less than 0.0035.

VI. CONCLUSION

We obtained an expression for the probability of successful
transmission in a clustered MIMO IA network when the impact
of channel estimation on the accuracy of the obtained CSI is
taken into account. The probability of successful transmission
for IA and SM was compared for a wide range of variables and
we showed that SM can outperform IA in high node densities.
We also showed that when imperfect CSI is taken into account,
the range of parameters where SM outperforms IA expands.
We leave a more thorough analysis of performance differences
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between IA and SM, especially when network wide objective
functions such as transmission capacity are involved, for future
work. We fixed the channel training period and the channel
access probability; future work will consider the optimization
of these parameters.
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