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Introduction and Background

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.

i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security

010010
↗ 010
↘ 010

Each party learns some information
about the secret. Uncertainty reduced
from 26 to 23 strings.

Encoding the secret and then
distributing the shares avoids
this information leakage. 010010

111101
↗
↘

111101
⊕

010010
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Introduction and Background

Components of Secret Sharing

Encoded secret
Trusted dealer encodes the secret and distributes it among the
parties P = {P1, . . . ,Pn}

Reconstruction
Authorized subsets of P can recover the secret

Secrecy
Unauthorized subsets cannot learn anything about the secret

Access structure
The collection of all authorized sets
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Introduction and Background

Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field Fq)
Encoded into q orthonormal quantum states

Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of q orthonormal states

Why quantum secret sharing?
� Enhanced security
� Increased efficiency for classical secrets
� We might require to share a quantum state
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Introduction and Background

Previous Work on Quantum Secret Sharing
[1] Quantum secret sharing, Hillery et al, Phys. Rev. A, 59, 1829, (1999).

Introduced quantum secret sharing.
[2] How to share a quantum secret, R. Cleve et al, Phys. Rev. Lett, 83, 648, (1999).

Systematic methods for a class of quantum secret sharing schemes and connected
them to quantum codes.

[3] Theory of quantum secret sharing, D. Gottesman, Phys. Rev. A, 64, 042311, (2000).
Further developed the theory addressing general access structures and classical
secrets.

[4] Quantum secret sharing for general access structures, A. Smith, quant-ph/001087, (2000).
Constructions for general access structures based on monotone span programs.

[5] Graph states for quantum secret sharing, M. Damian and B. Sanders, Phys. Rev. A, 78,
042309, (2008).

A framework for secret sharing using labelled graph states.
[6] Continuous variable (2, 3) threshold quantum secret sharing schemes, Lance et al, New J.

Phys. 5 (2003) 4, ( 2003).
[7] Experimental demonstration of quantum secret sharing, Tittel et al, Phys. Rev. A, 63, 042301

(2001).
[8] Experimental demonstrationof four-party quantum secret sharing, S. Gaertner et al,

qunat-ph/0610112, (2006).
[9] Experimental quantum secret sharing using telecommunication fiber, Bogdanski et al, Phys.

Rev. A 78, 062307 (2008).
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Introduction and Background

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as sj , 1 ≤ j ≤ n

An authorized set: {2,3, . . . ,6}

s1 s2 s3 s4 s5 s6 s7 s8 s9

Implicitly every subset that can reconstruct the secret is correcting
erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for
secret sharing.

Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 7 / 37



Introduction and Background

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as sj , 1 ≤ j ≤ n

An authorized set: {2,3, . . . ,6}

s1 s2 s3 s4 s5 s6 s7 s8 s9

Implicitly every subset that can reconstruct the secret is correcting
erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for
secret sharing.

Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 7 / 37



Introduction and Background

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as sj , 1 ≤ j ≤ n

An authorized set: {2,3, . . . ,6}

s1 s2 s3 s4 s5 s6 s7 s8 s9

Implicitly every subset that can reconstruct the secret is correcting
erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for
secret sharing.

Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 7 / 37



Introduction and Background

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as sj , 1 ≤ j ≤ n

An authorized set: {2,3, . . . ,6}

s1 s2 s3 s4 s5 s6 s7 s8 s9

Implicitly every subset that can reconstruct the secret is correcting
erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for
secret sharing.

Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 7 / 37



Introduction and Background

Classical Codes

An [n, k ,d ]q classical code C is a k -dimensional subspace of Fn
q and it

is capable of correcting up to d − 1 erasures.

C can be compactly described by a k × n generator matrix G.

G =


g11 g12 . . . g1n
g21 g22 . . . g2n

...
...

. . .
...

gk1 gk2 . . . gkn

 .
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Introduction and Background

Dual Codes

Associated to an [n, k ,d ]q classical code C is a [n,n − k ,d⊥]q code
called the dual code C⊥.

C⊥ = {x ∈ Fn
q | x · c = 0 for all c ∈ C}

The generator matrix H of C⊥ is called the parity check matrix of C.

H =


h11 h12 . . . h1n
h21 h22 . . . h2n

...
...

. . .
...

hk1 hk2 . . . hkn

 .
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Sharing Classical Secrets

Secret Sharing Schemes from Codes

� Every [n, k ,d ]q code C can be converted to a secret sharing
scheme Σ

� The access structure of Σ is defined by the dual code, C⊥

Consider a code C and its dual C⊥

C =


0000
0111
1011
1100

 C⊥ =


0000
0011
1110
1101


The encoded secret is any of the codewords in C with the first
coordinate dropped.

The authorized sets correspond to codewords in C⊥ that have nonzero
first coordinate
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Sharing Classical Secrets

Stabilizer Codes

Pauli group

Pn = {iag1 ⊗ g2 ⊗ · · · ⊗ gn | gi ∈ {I,X ,Z ,Y = iXZ}}

A [[n, k ,d ]]q stabilizer code Q is the joint eigenspace of an abelian
subgroup S ≤ Pn.

i) Q is a qk -dimensional subspace in qn-dimensional system Hilbert
space.

ii) Q can correct for d − 1 erasures.

ϕ :

I 7→ (0,0)
X 7→ (1,0)
Z 7→ (0,1)
Y 7→ (1,1)

X ⊗ Z ⊗ I ⊗ Y 7→ (1001|0101)

The stabilizer can be identified with a classical code by ϕ
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Sharing Classical Secrets

CSS Quantum Codes

S =

[
XXXX
ZZZZ

]
ϕ7→
[

1111 0
0 1111

]

CSS codes are stabilizer codes with the stabilizer generators
consisting of purely X or purely Z operators.

CSS codes are quantum stabilizer codes which are derived from a
classical code whose parity check matrix H satisfies HH t = 0. In other
words C ⊇ C⊥. The stabilizer (matrix) of the CSS code is[

H 0
0 H

]
ex: If C⊥ = [1111], the stabilizer of the quantum code is

S =

[
1111 0

0 1111

]
ϕ−1

7→
[

XXXX
ZZZZ

]
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Sharing Classical Secrets

Quantum Secret Sharing and Quantum Codes

What precisely is the correspondence between quantum codes and
secret sharing

� Can we take an [[n, k ,d ]]q quantum code and convert it into a
secret sharing scheme?

A correspondence between QECC and QSS exists but it seems to be
limited!

� [[2k − 1,1, k ]]q quantum MDS codes can lead to threshold secret
sharing schemes and vice versa, (Cleve et al 1999; Rietjens et al
2005)
� Every QECC does not appear to be a secret sharing scheme

In this talk we attempt to derive a stronger correspondence between
QECC and QSS
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Sharing Classical Secrets

Some more terminology

Authorized set
Any subset which can recover the secret

Unauthorized set
Any subset which cannot recover the secret

Access structure
The collection of authorized sets

Minimal authorized set

Authorized sets for which proper subsets are unauthorized

Minimal access structure
Collection of minimal authorized sets
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Sharing Classical Secrets

Minimal Codewords

The support of x = (x1, x2, . . . , xn), is the location of its nonzero
components.

ex: supp([1,0,1,0]) = {1,3}

We say that x covers y if supp(y) ⊆ supp(x)

ex: (1,1,0,1) covers (1,1,0,0) but not (1,0,1,1)

A codeword of C ⊆ Fn
q is said to be minimal if it does not cover any

other codeword of C except its scalar multiples
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A codeword of C ⊆ Fn
q is said to be minimal if it does not cover any

other codeword of C except its scalar multiples
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Sharing Classical Secrets

Sharing Classical Secrets with CSS States

Let Q be a pure [[n,1,d ]]2 CSS code derived from a classical code
C⊥ ⊆ C ⊆ Fn

2. Let E be the encoding given by the CSS code

E : |i〉 7→
∑

x∈C⊥
|x + ig〉 i ∈ F2, (1)

where g ∈ C \ C⊥. Distribute the n qubits as the n shares for a secret
sharing scheme, Σ. The minimal access structure Γ is given by

Γ =
{

supp(c) | c is a minimal codeword in C \ C⊥
}

(2)

The reconstruction for an authorized set is to simply take the parity of
the set (into an ancilla).
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Sharing Classical Secrets

Secret sharing using [[7, 1, 3]]2 code

[[7,1,3]]2 is derived from a code C ⊇ C⊥ with generator matrices

G =


1110000
1010101
0110011
0001111

 H =

 1010101
0110011
0001111


Encoding for the secret sharing scheme∣∣0〉 = |0000000〉+ |1010101〉+ |0110011〉+ |0001111〉

+ |1100110〉+ |1011010〉+ |0111100〉+ |1101001〉∣∣1〉 = |1111111〉+ |0101010〉+ |1001100〉+ |1110000〉
+ |0011001〉+ |0100101〉+ |1000011〉+ |0010110〉

C \ C⊥ = {(0100101), (0101010), (1001100), (1110000),

(0011001), (0100101), (0010110), (1111111)}
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Sharing Classical Secrets

Secret sharing using [[7, 1, 3]]2 code

Take the minimal codeword (1110000), the authorized from this is
{1,2,3}.
To reconstruct the secret compute the parity of these qubits.
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Sharing Classical Secrets

Minimal Access Structure

C \ C⊥ = {(0100101), (0101010), (1001100), (1110000),

(0011001), (0100101), (0010110), (1111111)}

Γ =

{
{1,2,7}; {1,3,5}; {1,4,6}; {2,3,4};

{2,5,6}; {3,6,7}; {4,5,7}

}
.

The minimal authorized set has d parties and all the codewords of
minimum distance in C \ C⊥ give rise to minimal authorized sets.
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Sharing Classical Secrets

CSS Code Based Secret Sharing

Let Q be a pure [[n,1,d ]]q CSS code derived from a classical code
C⊥ ⊆ C ⊆ Fn

q. Let E be the encoding given by the CSS code

E : |i〉 7→
∑

x∈C⊥
|x + ig〉 i ∈ Fq, g ∈ C \ C⊥ and g · g = β 6= 0 (3)

Distribute the n qudits as the n shares. The minimal access structure Γ

Γ =
{

supp(c) | c is a minimal codeword in C \ C⊥
}

(4)

The reconstruction for an authorized set derived from a minimal
codeword c = αg + s for some s ∈ C⊥ is to compute

(αβ)−1
∑

j∈supp(c)

cjSj , where Sj is the j th share (5)
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Sharing Classical Secrets

Quantum Secret Sharing and Error Correction

Lemma (Gottesman, 2000)

Suppose we have a set of orthonormal states |ψi〉 encoding a classical
secret. Then a set T is an unauthorized set iff

〈ψi |F |ψi〉 = c(F ) (6)

independent of i for all operators F on T . The set T is authorized iff

〈ψi |E
∣∣ψj
〉

= 0 (i 6= j) (7)

for all operators E on the complement of T .

Informally,
Authorized sets can reconstruct the secret
Unauthorized sets cannot learn anything about the secret
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Sharing Quantum Secrets

Quantum Secret Sharing and No Cloning

No Cloning Theorem (Wootters, Zurek, Dieks 1982)

We cannot make copies of an unknown quantum state.

No cloning theorem puts restrictions on the permissible authorized
sets equivalently, access structures.

� No two authorized sets are disjoint
� The access structure Γ is self-orthogonal

Γ ⊆ Γ∗ where Γ∗ = {A | A 6∈ Γ}.
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Sharing Quantum Secrets

Secret Sharing Schemes from Classical Codes

Extended Hamming code given by the following generator matrix.

GC =


1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1


We can check that C self-dual. The punctured code ρ1(C) and the
shortened code σ1(C) are given by the following generator matrices.

Gρ1(C) =


1 1 1 1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

 Gσ1(C) =

 1 1 1 1
1 1 1 1

1 1 1 1


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Sharing Quantum Secrets

Secret Sharing Schemes from Classical Codes

Now let us form a (CSS) stabilizer code with stabilizer matrix as
follows.

S =

[
Gσ1(C) 0

0 ρ1(C)⊥

]

=



1 1 1 1
01 1 1 1

1 1 1 1

0
1 1 1 1

1 1 1 1
1 1 1 1



Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 24 / 37



Sharing Quantum Secrets

Encoding the secret

The secret is encoded into the encoded states of the quantum code
and each qubit is given as a share.

For this stabilizer code the encoding for |0〉 and |1〉 is given as

|0〉 7→ |0000000〉+ |1000111〉+ |0101011〉+ |0011110〉
+ |1101100〉+ |1011001〉+ |0110101〉+ |1110010〉

|1〉 7→ |1111111〉+ |0111000〉+ |1010100〉+ |1100001〉
+ |0010011〉+ |0100110〉+ |1001010〉+ |0001101〉

|s〉 7→
∑

c∈σc(C)

∣∣s · X + c
〉

where X = (1,1,1,1,1,1,1)
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Sharing Quantum Secrets

Recovering the secret

Goal is to recover the secret accessing only the qubits in the
authorized set.

The authorized sets are determined by the minimal codewords in C⊥.

Algorithm 1 Recovering the secret

1: Input: c ∈ C⊥, a minimal codeword with c0 = 1
2: for i ∈ supp(c) \ 1 do
3: Add the i th qubit to the first qubit
4: end for
5: for i ∈ supp(c) \ 1 do
6: Add the first column to the i the column
7: end for
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Sharing Quantum Secrets

Recovering the secret

Now consider a minimal codeword in C⊥ such that c0 = 1. One such
codeword is (1,1,1,0,0,0,0,1). supp(c) = {0,1,2,7}, Claim {1,2,7}
is an authorized set.

|0〉 7→ |0000000〉+ |1000111〉+ |0101011〉+ |0011110〉
+ |1101100〉+ |1011001〉+ |0110101〉+ |1110010〉

|1〉 7→ |1111111〉+ |0111000〉+ |1010100〉+ |1100001〉
+ |0010011〉+ |0100110〉+ |1001010〉+ |0001101〉

|0〉 7→ |0000000〉+ |0000111〉+ |0101011〉+ |0011110〉
+ |0101100〉+ |0011001〉+ |0110101〉+ |0110010〉

|1〉 7→ |1111111〉+ |1111000〉+ |1010100〉+ |1100001〉
+ |1010011〉+ |1100110〉+ |1001010〉+ |1001101〉

At this point we have
∣∣0〉 7→ |0〉 |ψ〉 and

∣∣1〉 7→ |1〉 |ψ′〉Pradeep Sarvepalli (UBC) Quantum Secret Sharing April 29, 2009 27 / 37
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Sharing Quantum Secrets

Recovering the secret

The key observation is that |ψ′〉 =
∣∣ψ + X ′

〉
, where

X ′ = (1,1,0,0,0,0,1) = (c1, c2, . . . , cn).

So we need to transform |ψ′〉 to |ψ〉.

|s〉 (|000000〉+ |000111〉+ |101011〉+ |011110〉
+ |101100〉+ |011001〉+ |110101〉+ |110010〉)
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Sharing Quantum Secrets

Correctness of Recovery

S =



1 1 1 1
01 1 1 1

1 1 1 1

0
1 1 1 1

1 1 1 1
1 1 1 1



7→



0 1 1 1
00 1 1 1 1

0 1 1 1 1

0
1 1 1 1 0

1 1 1 1
1 1 1 1


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Sharing Quantum Secrets

Correctness of Recovery

� Minimal codewords correspond to the undetectable errors of the
quantum code
� They also act as the encoded operators of the code

The first operation transforms the stabilizer so that the secret is in the
first qubit. The second set of operations transform the encoded
operator so that the the encoded states are disentangled from the first
qubit.
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Sharing Quantum Secrets

Quantum Secret Sharing Schemes from Classical
Codes

Let C ⊆ Fn
q be an [n + 1, k ,d ]q code such that C⊥ = C with generator

matrix GC given as

GC =

[
1 g
0 σ0(C)

]
=

[
1

ρ0(C)0

]
. (8)

Then there exists a quantum secret sharing scheme Σ on n parties
whose access structure is determined by the minimal cdoewords of C
and the dealer is associated to the 1st, coordinate; Σ is encoded using
the stabilizer code with the stabilizer matrix given by

S =

[
σ0(C) 0

0 ρ0(C)⊥

]
(9)

The secret is recovered using Algorithm 1.
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Sharing Quantum Secrets

Quantum Secret Sharing and Error Correction

Lemma (Cleve et al, 1999)

Suppose we have any set of orthonormal states |ψi〉 of subspace Q
encoding a quantum secret. Then a set T is an unauthorized set iff

〈ψi |F |ψi〉 = c(F ) (10)

independent of i for all operators F on T . The set T is authorized iff

〈ψi |E
∣∣ψj
〉

= 0 (i 6= j) (11)

for all operators E on the complement of T .

Informally,
Authorized sets can reconstruct the secret
Unauthorized sets cannot learn anything about the secret
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Matroids and Secret Sharing

Matroids

A set V and C ⊆ 2V form a matroidM(V , C) if and only if the following
conditions hold.
M1) A,B ∈ C if and only if A 6⊆ B.
M2) If x ∈ A∩B, then there exists a C ∈ C such that C ⊆ (A∪B) \ {x}.

We say that V is the ground set and C the set of minimal circuits of the
matroid.

Matroids and secret sharing schemes are related by a correspondence
between the minimal circuits and the access structure.
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Matroids and Secret Sharing

Vector Matroids

To every matrix G, we can associate a matroid.

G =


g11 g12 . . . g1n
g21 g22 . . . g2n

...
...

. . .
...

gk1 gk2 . . . gkn

 .
The ground set is the set of columns of G and the minimal circuits of
the matroid G are the minimally independent columns of G.
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Matroids and Secret Sharing

Matroids and Secret Sharing Schemes

Given an access structure Γ and a secret sharing scheme Σ that
realizes Γ we can associate it to a matroid.

Γe = {A ∪ D | for all A ∈ Γ0}

C(A,B) = A ∪ B \
(⋂

C∈Γe:C⊆A∪B
C
)

(12)

CΓ = { minimal sets of C(A,B) for all A,B ∈ Γ0 and A 6= B}.(13)

If CΓ satisfies the axioms M1 and M2, then we say associate the
matroidMΓ to Γ with the ground set P ∪ D and the set of minimal
circuits given by CΓ i.e.

MΓ =M(P ∪ D, CΓ). (14)
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Matroids and Secret Sharing

Matoids and Quantum Secret Sharing Schemes

Let C ⊆ Fn
q be an [n + 1, k ,d ]q code such that C⊥ = C with generator

matrix GC given as

GC =

[
1 g
0 σ0(C)

]
=

[
1

ρ0(C)0

]
. (15)

Then there exists a quantum secret sharing scheme Σ on n parties
whose access structure is determined the by vector matroid
associated to C and the dealer is associated to the 1st, coordinate; Σ
is encoded using the stabilizer code with the stabilizer matrix given by

S =

[
σ0(C) 0

0 ρ0(C)⊥

]
(16)
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Matroids and Secret Sharing

Summary

� Derived new secret sharing schemes based on CSS codes
Strengthened the connection between quantum codes and secret
sharing schemes
Provided a new characterization of the access structure in terms of
minimal codewords

� Sketched some links between quantum secret sharing schemes
and matroids

Thanks!
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