Quantum Secret Sharing with CSS Codes

Pradeep Sarvepalli

Joint work with Andreas Klappenecker and Robert Raussendorf

Quantum Information Seminar
Department of Physics and Astronomy
University of British Columbia, Vancouver

Outline

(1) Introduction and Background
(2) Sharing Classical Secrets
(3) Sharing Quantum Secrets
4. Matroids and Secret Sharing

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security
$010010 \nearrow 010$

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security

Each party learns some information about the secret.

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security
 Each party learns some information about the secret. Uncertainty reduced from 2^{6} to 2^{3} strings.

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security

Each party learns some information about the secret. Uncertainty reduced from 2^{6} to 2^{3} strings.

Encoding the secret and then distributing the shares avoids this information leakage.

Introduction to Secret Sharing

Motivated by the need to secure sensitive information.
i) passwords for secure locations such as bank vaults
ii) strategic military information
iii) secure distributed computing
iv) privacy (anonymous voting)

Distributing the key among various parties can enhance security

Each party learns some information about the secret. Uncertainty reduced from 2^{6} to 2^{3} strings.

Encoding the secret and then distributing the shares avoids this information leakage.

111101
010010
$111101 \oplus 010010$

Components of Secret Sharing

Encoded secret

Trusted dealer encodes the secret and distributes it among the parties $P=\left\{P_{1}, \ldots, P_{n}\right\}$

Reconstruction

Authorized subsets of P can recover the secret

Secrecy

Unauthorized subsets cannot learn anything about the secret
Access structure
The collection of all authorized sets

Components of Secret Sharing

Encoded secret

Trusted dealer encodes the secret and distributes it among the parties $P=\left\{P_{1}, \ldots, P_{n}\right\}$

Reconstruction
Authorized subsets of P can recover the secret
Secrecy
Unauthorized subsets cannot learn anything about the secret
Access structure
The collection of all authorized sets

Components of Secret Sharing

Encoded secret

Trusted dealer encodes the secret and distributes it among the parties $P=\left\{P_{1}, \ldots, P_{n}\right\}$

Reconstruction
Authorized subsets of P can recover the secret

Secrecy

Unauthorized subsets cannot learn anything about the secret

Access structure
 The collection of all authorized sets

Components of Secret Sharing

Encoded secret

Trusted dealer encodes the secret and distributes it among the parties $P=\left\{P_{1}, \ldots, P_{n}\right\}$

Reconstruction
Authorized subsets of P can recover the secret

Secrecy

Unauthorized subsets cannot learn anything about the secret
Access structure
The collection of all authorized sets

Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field \mathbb{F}_{q}) Encoded into q orthonormal quantum states
Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of a orthonormal states

Why quantum secret sharing?
Enhanced security
Increased efficiency for classical secrets
We might require to share a quantum state

Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field \mathbb{F}_{q})
Encoded into q orthonormal quantum states
Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of q orthonormal states

Why quantum secret sharing?
Enhanced security
Increased efficiency for classical secrets
We might require to share a quantum state

Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field \mathbb{F}_{q})
Encoded into q orthonormal quantum states
Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of q orthonormal states

Why quantum secret sharing?
Enhanced security
Increased efficiency for classical secrets
We might require to share a quantum state

Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field \mathbb{F}_{q})
Encoded into q orthonormal quantum states
Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of q orthonormal states

Why quantum secret sharing?

\diamond Enhanced security
\diamond Increased efficiency for classical secrets
\diamond We might require to share a quantum state

Previous Work on Quantum Secret Sharing

[1] Quantum secret sharing, Hillery et al, Phys. Rev. A, 59, 1829, (1999).
Introduced quantum secret sharing.
[2] How to share a quantum secret, R. Cleve et al, Phys. Rev. Lett, 83, 648, (1999).
Systematic methods for a class of quantum secret sharing schemes and connected them to quantum codes.
[3] Theory of quantum secret sharing, D. Gottesman, Phys. Rev. A, 64, 042311, (2000). Further developed the theory addressing general access structures and classical secrets.
[4] Quantum secret sharing for general access structures, A. Smith, quant-ph/001087, (2000).
Constructions for general access structures based on monotone span programs.
[5] Graph states for quantum secret sharing, M. Damian and B. Sanders, Phys. Rev. A, 78, 042309, (2008).

A framework for secret sharing using labelled graph states.
[6] Continuous variable $(2,3)$ threshold quantum secret sharing schemes, Lance et al, New J.
Phys. $5(2003) 4,(2003)$.
[7] Experimental demonstration of quantum secret sharing, Tittel et al, Phys. Rev. A, 63, 042301
(2001).
[8] Experimental demonstrationof four-party quantum secret sharing, S. Gaerther et al,
qunat-ph/0610112, (2006).
[9] Experimental quantum secret sharing using telecommunication fiber, Bogdanski et al, Phys. Rev. A 78, 062307 (2008).

Previous Work on Quantum Secret Sharing

[1] Quantum secret sharing, Hillery et al, Phys. Rev. A, 59, 1829, (1999).
Introduced quantum secret sharing.
[2] How to share a quantum secret, R. Cleve et al, Phys. Rev. Lett, 83, 648, (1999).
Systematic methods for a class of quantum secret sharing schemes and connected them to quantum codes.
[3] Theory of quantum secret sharing, D. Gottesman, Phys. Rev. A, 64, 042311, (2000). Further developed the theory addressing general access structures and classical secrets.
[4] Quantum secret sharing for general access structures, A. Smith, quant-ph/001087, (2000).
Constructions for general access structures based on monotone span programs.
[5] Graph states for quantum secret sharing, M. Damian and B. Sanders, Phys. Rev. A, 78, 042309, (2008).

A framework for secret sharing using labelled graph states.
[6] Continuous variable $(2,3)$ threshold quantum secret sharing schemes, Lance et al, New J. Phys. 5 (2003) 4, (2003).
[7] Experimental demonstration of quantum secret sharing, Tittel et al, Phys. Rev. A, 63, 042301 (2001).
[8] Experimental demonstrationof four-party quantum secret sharing, S. Gaertner et al, qunat-ph/0610112, (2006).
[9] Experimental quantum secret sharing using telecommunication fiber, Bogdanski et al, Phys. Rev. A 78, 062307 (2008).

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as $s_{j}, 1 \leq j \leq n$

Implicitly every subset that can reconstruct the secret is correcting erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for secret sharing.

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as $s_{j}, 1 \leq j \leq n$

An authorized set: $\{2,3, \ldots, 6\}$

Implicitly every subset that can reconstruct the secret is correcting erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for secret sharing.

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as $s_{j}, 1 \leq j \leq n$

An authorized set: $\{2,3, \ldots, 6\}$

Implicitly every subset that can reconstruct the secret is correcting erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for secret sharing.

Secret Sharing and Error Correction

Assume that the shares are distributed to n players as $s_{j}, 1 \leq j \leq n$
An authorized set: $\{2,3, \ldots, 6\}$

Implicitly every subset that can reconstruct the secret is correcting erasure errors on the (qu)bits it does not have access

It suggests that codewords of an error correcting code can be used for secret sharing.

Classical Codes

An $[n, k, d]_{q}$ classical code C is a k-dimensional subspace of \mathbb{F}_{q}^{n} and it is capable of correcting up to $d-1$ erasures.
C can be compactly described by a $k \times n$ generator matrix G.

Classical Codes

An $[n, k, d]_{q}$ classical code C is a k-dimensional subspace of \mathbb{F}_{q}^{n} and it is capable of correcting up to $d-1$ erasures.
C can be compactly described by a $k \times n$ generator matrix G.

$$
G=\left[\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1 n} \\
g_{21} & g_{22} & \ldots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{k 1} & g_{k 2} & \ldots & g_{k n}
\end{array}\right] .
$$

Dual Codes

Associated to an $[n, k, d]_{q}$ classical code C is a $\left[n, n-k, d^{\perp}\right]_{q}$ code called the dual code C^{\perp}.

$$
C^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid x \cdot c=0 \text { for all } c \in C\right\}
$$

The generator matrix H of C^{\perp} is called the parity check matrix of C.

Dual Codes

Associated to an $[n, k, d]_{q}$ classical code C is a $\left[n, n-k, d^{\perp}\right]_{q}$ code called the dual code C^{\perp}.

$$
C^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid x \cdot c=0 \text { for all } c \in C\right\}
$$

The generator matrix H of C^{\perp} is called the parity check matrix of C.

$$
H=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 n} \\
h_{21} & h_{22} & \ldots & h_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
h_{k 1} & h_{k 2} & \ldots & h_{k n}
\end{array}\right] .
$$

Secret Sharing Schemes from Codes

\diamond Every $[n, k, d]_{q}$ code C can be converted to a secret sharing scheme Σ
\diamond The access structure of Σ is defined by the dual code, C^{\perp}
Consider a code C and its dual C^{\perp}

$$
C=\left\{\begin{array}{l}
0000 \\
0111 \\
1011 \\
1100
\end{array}\right\} \quad C^{\perp}=\left\{\begin{array}{l}
0000 \\
0011 \\
1110 \\
1101
\end{array}\right\}
$$

The encoded secret is any of the codewords in C with the first coordinate dropped.

The authorized sets correspond to codewords in C^{\perp} that have nonzero first coordinate

Secret Sharing Schemes from Codes

\diamond Every $[n, k, d]_{q}$ code C can be converted to a secret sharing scheme Σ
\diamond The access structure of Σ is defined by the dual code, C^{\perp}
Consider a code C and its dual C^{\perp}

$$
C=\left\{\begin{array}{l}
0000 \\
0111 \\
1011 \\
1100
\end{array}\right\} \quad C^{\perp}=\left\{\begin{array}{l}
0000 \\
0011 \\
1110 \\
1101
\end{array}\right\}
$$

The encoded secret is any of the codewords in C with the first coordinate dropped.

The authorized sets correspond to codewords in C^{\perp} that have nonzero first coordinate

Secret Sharing Schemes from Codes

\diamond Every $[n, k, d]_{q}$ code C can be converted to a secret sharing scheme Σ
\diamond The access structure of Σ is defined by the dual code, C^{\perp}
Consider a code C and its dual C^{\perp}

$$
C=\left\{\begin{array}{l}
0000 \\
0111 \\
1011 \\
1100
\end{array}\right\} \quad C^{\perp}=\left\{\begin{array}{l}
0000 \\
0011 \\
1110 \\
1101
\end{array}\right\}
$$

The encoded secret is any of the codewords in C with the first coordinate dropped.
The authorized sets correspond to codewords in C^{\perp} that have nonzero first coordinate

Stabilizer Codes

Pauli group

$$
\mathcal{P}_{n}=\left\{i^{a} g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n} \mid g_{i} \in\{I, X, Z, Y=i X Z\}\right\}
$$

A $[[n, k, d]]_{q}$ stabilizer code Q is the joint eigenspace of an abelian subgroup $S \leq \mathcal{P}_{n}$.
i) Q is a q^{k}-dimensional subspace in q^{n}-dimensional system Hilbert space.
ii) Q can correct for $d-1$ erasures.

The stabilizer can be identified with a classical code by

Stabilizer Codes

Pauli group

$$
\mathcal{P}_{n}=\left\{i^{a} g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n} \mid g_{i} \in\{I, X, Z, Y=i X Z\}\right\}
$$

A $[[n, k, d]]_{q}$ stabilizer code Q is the joint eigenspace of an abelian subgroup $S \leq \mathcal{P}_{n}$.
i) Q is a q^{k}-dimensional subspace in q^{n}-dimensional system Hilbert space.
ii) Q can correct for $d-1$ erasures.

The stabilizer can be identified with a classical cgde by

Stabilizer Codes

Pauli group

$$
\mathcal{P}_{n}=\left\{i^{a} g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n} \mid g_{i} \in\{I, X, Z, Y=i X Z\}\right\}
$$

A $[[n, k, d]]_{q}$ stabilizer code Q is the joint eigenspace of an abelian subgroup $S \leq \mathcal{P}_{n}$.
i) Q is a q^{k}-dimensional subspace in q^{n}-dimensional system Hilbert space.
ii) Q can correct for $d-1$ erasures.

$$
\varphi: \begin{array}{rlr}
I & \mapsto & (0,0) \\
X & \mapsto & (1,0) \\
Z & \mapsto & (0,1) \\
Y & \mapsto & (1,1)
\end{array}
$$

The stabilizer can be identified with a classical code by

Stabilizer Codes

Pauli group

$$
\mathcal{P}_{n}=\left\{i^{a} g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n} \mid g_{i} \in\{I, X, Z, Y=i X Z\}\right\}
$$

A $[[n, k, d]]_{q}$ stabilizer code Q is the joint eigenspace of an abelian subgroup $S \leq \mathcal{P}_{n}$.
i) Q is a q^{k}-dimensional subspace in q^{n}-dimensional system Hilbert space.
ii) Q can correct for $d-1$ erasures.

$$
\varphi: \begin{aligned}
I & \mapsto(0,0) \\
X & \mapsto(1,0) \\
Z & \mapsto(0,1) \\
Y & \mapsto(1,1)
\end{aligned} \quad X \otimes Z \otimes I \otimes Y \mapsto(1001 \mid 0101)
$$

The stabilizer can be identified with a classical code by

CSS Quantum Codes

$$
S=\left[\begin{array}{l}
X X X X \\
Z Z Z Z
\end{array}\right] \stackrel{\varphi}{\mapsto}\left[\begin{array}{cc}
1111 & 0 \\
0 & 1111
\end{array}\right]
$$

CSS codes are stabilizer codes with the stabilizer generators consisting of purely X or purely Z operators.

CSS codes are quantum stabilizer codes which are derived from a classical code whose parity check matrix H satisfies $H H^{t}=0$. In other words $C \supseteq C^{\perp}$. The stabilizer (matrix) of the CSS code is
ex: If $C^{\perp}=[1111]$, the stabilizer of the quantum code is

CSS Quantum Codes

$$
S=\left[\begin{array}{l}
X X X X \\
Z Z Z Z
\end{array}\right] \stackrel{\varphi}{\mapsto}\left[\begin{array}{cc}
1111 & 0 \\
0 & 1111
\end{array}\right]
$$

CSS codes are stabilizer codes with the stabilizer generators consisting of purely X or purely Z operators.

CSS codes are quantum stabilizer codes which are derived from a classical code whose parity check matrix H satisfies $H H^{t}=0$. In other words $C \supseteq C^{\perp}$. The stabilizer (matrix) of the CSS code is

$$
\left[\begin{array}{ll}
H & 0 \\
0 & H
\end{array}\right]
$$

ex: If $C^{\perp}=[1111]$, the stabilizer of the quantum code is

CSS Quantum Codes

$$
S=\left[\begin{array}{l}
X X X X \\
Z Z Z Z
\end{array}\right] \stackrel{\varphi}{\mapsto}\left[\begin{array}{cc}
1111 & 0 \\
0 & 1111
\end{array}\right]
$$

CSS codes are stabilizer codes with the stabilizer generators consisting of purely X or purely Z operators.

CSS codes are quantum stabilizer codes which are derived from a classical code whose parity check matrix H satisfies $H H^{t}=0$. In other words $C \supseteq C^{\perp}$. The stabilizer (matrix) of the CSS code is

$$
\left[\begin{array}{ll}
H & 0 \\
0 & H
\end{array}\right]
$$

ex: If $C^{\perp}=[1111]$, the stabilizer of the quantum code is

$$
S=\left[\begin{array}{cc}
1111 & 0 \\
0 & 1111
\end{array}\right] \stackrel{\varphi^{-1}}{\mapsto}\left[\begin{array}{c}
X X X X \\
Z Z Z Z
\end{array}\right]
$$

Quantum Secret Sharing and Quantum Codes

What precisely is the correspondence between quantum codes and secret sharing
\diamond Can we take an $[[n, k, d]]_{q}$ quantum code and convert it into a secret sharing scheme?

In this talk we attempt to derive a stronger correspondence between

Quantum Secret Sharing and Quantum Codes

What precisely is the correspondence between quantum codes and secret sharing
\diamond Can we take an $[[n, k, d]]_{q}$ quantum code and convert it into a secret sharing scheme?

A correspondence between QECC and QSS exists but it seems to be limited!
$\diamond[[2 k-1,1, k]]_{q}$ quantum MDS codes can lead to threshold secret sharing schemes and vice versa, (Cleve et al 1999; Rietjens et al 2005)
\diamond Every QECC does not appear to be a secret sharing scheme
In this talk we attempt to derive a stronger correspondence between QECC and QSS

Quantum Secret Sharing and Quantum Codes

What precisely is the correspondence between quantum codes and secret sharing
\diamond Can we take an $[[n, k, d]]_{q}$ quantum code and convert it into a secret sharing scheme?

A correspondence between QECC and QSS exists but it seems to be limited!
$\diamond[[2 k-1,1, k]]_{q}$ quantum MDS codes can lead to threshold secret sharing schemes and vice versa, (Cleve et al 1999; Rietjens et al 2005)
\diamond Every QECC does not appear to be a secret sharing scheme
In this talk we attempt to derive a stronger correspondence between QECC and QSS

Some more terminology

Authorized set

- Any subset which can recover the secret

Unauthorized set

- Any subset which cannot recover the secret

Access structure

- The collection of authorized sets

Minimal authorized set

- Authorized sets for which proper subsets are unauthorized

Minimal access structure

- Collection of minimal authorized sets

Some more terminology

Authorized set

- Any subset which can recover the secret

Unauthorized set

- Any subset which cannot recover the secret

Access structure

- The collection of authorized sets

Minimal authorized set

- Authorized sets for which proper subsets are unauthorized

Minimal access structure

- Collection of minimal authorized sets

Minimal Codewords

The support of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is the location of its nonzero components.

$$
\operatorname{ex}: \operatorname{supp}([1,0,1,0])=\{1,3\}
$$

We say that x covers y if $\operatorname{supp}(y) \subseteq \operatorname{supp}(x)$
ex: $(1,1,0,1)$ covers $(1,1,0,0)$ but not $(1,0,1,1)$

A codeword of $C \subseteq \mathbb{F}_{q}^{n}$ is said to be minimal if it does not cover any other codeword of C except its scalar multiples

Minimal Codewords

The support of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is the location of its nonzero components.
ex: $\operatorname{supp}([1,0,1,0])=\{1,3\}$
We say that x covers y if $\operatorname{supp}(y) \subseteq \operatorname{supp}(x)$
ex: $(1,1,0,1)$ covers $(1,1,0,0)$ but not $(1,0,1,1)$

A codeword of $C \subseteq \mathbb{F}_{q}^{n}$ is said to be minimal if it does not cover any other codeword of C except its scalar multiples

Minimal Codewords

The support of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is the location of its nonzero components.
ex: $\operatorname{supp}([1,0,1,0])=\{1,3\}$
We say that x covers y if $\operatorname{supp}(y) \subseteq \operatorname{supp}(x)$
ex: $(1,1,0,1)$ covers $(1,1,0,0)$ but not $(1,0,1,1)$

A codeword of $C \subseteq \mathbb{F}_{q}^{n}$ is said to be minimal if it does not cover any other codeword of C except its scalar multiples

Minimal Codewords

The support of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is the location of its nonzero components.
ex: $\operatorname{supp}([1,0,1,0])=\{1,3\}$
We say that x covers y if $\operatorname{supp}(y) \subseteq \operatorname{supp}(x)$
ex: $(1,1,0,1)$ covers $(1,1,0,0)$ but not $(1,0,1,1)$

A codeword of $C \subseteq \mathbb{F}_{q}^{n}$ is said to be minimal if it does not cover any other codeword of C except its scalar multiples

Sharing Classical Secrets with CSS States

Let Q be a pure $[[n, 1, d]]_{2}$ CSS code derived from a classical code $C^{\perp} \subseteq C \subseteq \mathbb{F}_{2}^{n}$. Let \mathcal{E} be the encoding given by the CSS code

$$
\begin{equation*}
\mathcal{E}:|i\rangle \mapsto \sum_{x \in C^{\perp}}|x+i g\rangle \quad i \in \mathbb{F}_{2}, \tag{1}
\end{equation*}
$$

where $g \in C \backslash C^{\perp}$. Distribute the n qubits as the n shares for a secret sharing scheme, Σ. The minimal access structure Γ is given by

$$
\begin{equation*}
\Gamma=\left\{\operatorname{supp}(c) \mid c \text { is a minimal codeword in } C \backslash C^{\perp}\right\} \tag{2}
\end{equation*}
$$

The reconstruction for an authorized set is to simply take the parity of the set (into an ancilla).

Secret sharing using $[[7,1,3]]_{2}$ code

[[7, 1,3$]]_{2}$ is derived from a code $C \supseteq C^{\perp}$ with generator matrices

$$
G=\left[\begin{array}{l}
1110000 \\
\hline 1010101 \\
0110011 \\
0001111
\end{array}\right] \quad H=\left[\begin{array}{l}
1010101 \\
0110011 \\
0001111
\end{array}\right]
$$

Encoding for the secret sharing scheme

Secret sharing using $[[7,1,3]]_{2}$ code

[$[7,1,3]]_{2}$ is derived from a code $C \supseteq C^{\perp}$ with generator matrices

$$
G=\left[\begin{array}{l}
1110000 \\
\hline 1010101 \\
0110011 \\
0001111
\end{array}\right] \quad H=\left[\begin{array}{l}
1010101 \\
0110011 \\
0001111
\end{array}\right]
$$

Encoding for the secret sharing scheme

$$
\begin{aligned}
|\overline{0}\rangle & =|0000000\rangle+|1010101\rangle+|0110011\rangle+|0001111\rangle \\
& +|1100110\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle \\
|\overline{1}\rangle & =|1111111\rangle+|0101010\rangle+|1001100\rangle+|1110000\rangle \\
& +|0011001\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle
\end{aligned}
$$

Secret sharing using $[[7,1,3]]_{2}$ code

[$[7,1,3]]_{2}$ is derived from a code $C \supseteq C^{\perp}$ with generator matrices

$$
G=\left[\begin{array}{l}
1110000 \\
1010101 \\
0110011 \\
0001111
\end{array}\right] \quad H=\left[\begin{array}{l}
1010101 \\
0110011 \\
0001111
\end{array}\right]
$$

Encoding for the secret sharing scheme

$$
\begin{aligned}
|\overline{0}\rangle= & |0000000\rangle+|1010101\rangle+|0110011\rangle+|0001111\rangle \\
+ & |1100110\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle \\
|\overline{1}\rangle= & |1111111\rangle+|0101010\rangle+|1001100\rangle+|1110000\rangle \\
+ & |0011001\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle \\
C \backslash C^{\perp}= & \{(0100101),(0101010),(1001100),(1110000), \\
& (0011001),(0100101),(0010110),(1111111)\}
\end{aligned}
$$

Secret sharing using $[[7,1,3]]_{2}$ code

Take the minimal codeword (1110000), the authorized from this is $\{1,2,3\}$.
To reconstruct the secret compute the parity of these qubits.

Secret sharing using $[[7,1,3]]_{2}$ code

Take the minimal codeword (1110000), the authorized from this is $\{1,2,3\}$.
To reconstruct the secret compute the parity of these qubits.

$$
\begin{aligned}
|\overline{0}\rangle & =|0000000\rangle+|1010101\rangle+|0110011\rangle+|0001111\rangle \\
& +|1100110\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle \\
|\overline{1}\rangle & =|1111111\rangle+|0101010\rangle+|1001100\rangle+|1110000\rangle \\
& +|0011001\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle
\end{aligned}
$$

Minimal Access Structure

$$
\begin{aligned}
C \backslash C^{\perp}= & \{(0100101),(0101010),(1001100),(1110000), \\
& (0011001),(0100101),(0010110),(1111111)\} \\
\Gamma= & \left\{\begin{array}{c}
\{1,2,7\} ;\{1,3,5\} ;\{1,4,6\} ;\{2,3,4\} ; \\
\{2,5,6\} ;\{3,6,7\} ;\{4,5,7\}
\end{array}\right\} .
\end{aligned}
$$

The minimal authorized set has d parties and all the codewords of minimum distance in $C \backslash C^{\perp}$ give rise to minimal authorized sets.

CSS Code Based Secret Sharing

Let Q be a pure $[[n, 1, d]]_{q}$ CSS code derived from a classical code $C^{\perp} \subseteq C \subseteq \mathbb{F}_{q}^{n}$. Let \mathcal{E} be the encoding given by the CSS code

$$
\begin{equation*}
\mathcal{E}:|i\rangle \mapsto \sum_{x \in C^{\perp}}|x+i g\rangle \quad i \in \mathbb{F}_{q}, \quad g \in C \backslash C^{\perp} \text { and } g \cdot g=\beta \neq 0 \tag{3}
\end{equation*}
$$

Distribute the n qudits as the n shares. The minimal access structure Γ

$$
\begin{equation*}
\Gamma=\left\{\operatorname{supp}(c) \mid c \text { is a minimal codeword in } C \backslash C^{\perp}\right\} \tag{4}
\end{equation*}
$$

The reconstruction for an authorized set derived from a minimal codeword $c=\alpha g+s$ for some $s \in C^{\perp}$ is to compute

$$
\begin{equation*}
(\alpha \beta)^{-1} \sum_{j \in \operatorname{supp}(c)} c_{j} S_{j}, \text { where } S_{j} \text { is the } j \text { th share } \tag{5}
\end{equation*}
$$

Quantum Secret Sharing and Error Correction

Lemma (Gottesman, 2000)

Suppose we have a set of orthonormal states $\left|\psi_{i}\right\rangle$ encoding a classical secret. Then a set T is an unauthorized set iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| F\left|\psi_{i}\right\rangle=c(F) \tag{6}
\end{equation*}
$$

independent of i for all operators F on T. The set T is authorized iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad(i \neq j) \tag{7}
\end{equation*}
$$

for all operators E on the complement of T.
Informally,

- Authorized sets can reconstruct the secret
- Unauthorized sets cannot learn anything about the secret

Quantum Secret Sharing and Error Correction

Lemma (Gottesman, 2000)

Suppose we have a set of orthonormal states $\left|\psi_{i}\right\rangle$ encoding a classical secret. Then a set T is an unauthorized set iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| F\left|\psi_{i}\right\rangle=c(F) \tag{6}
\end{equation*}
$$

independent of i for all operators F on T. The set T is authorized iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad(i \neq j) \tag{7}
\end{equation*}
$$

for all operators E on the complement of T.
Informally,

- Authorized sets can reconstruct the secret
- Unauthorized sets cannot learn anything about the secret

Quantum Secret Sharing and No Cloning

No Cloning Theorem (Wootters, Zurek, Dieks 1982)

We cannot make copies of an unknown quantum state.
No cloning theorem puts restrictions on the permissible authorized sets equivalently, access structures.
\diamond No two authorized sets are disjoint
\diamond The access structure Γ is self-orthogonal

$$
\Gamma \subseteq \Gamma^{*} \text { where } \Gamma^{*}=\{A \mid \bar{A} \notin \Gamma\}
$$

Secret Sharing Schemes from Classical Codes

Extended Hamming code given by the following generator matrix.

$$
G_{C}=\left[\begin{array}{l|lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 1 & & & & 1 & 1 & 1 \\
& & 1 & & 1 & & 1 & 1 \\
& & & 1 & 1 & 1 & 1 &
\end{array}\right]
$$

We can check that C self-dual. The punctured code $\rho_{1}(C)$ and the shortened code $\sigma_{1}(C)$ are given by the following generator matrices.
$G_{\rho_{1}(C)}=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & & & & 1 & 1 & 1 \\ & 1 & & 1 & & 1 & 1 \\ & & 1 & 1 & 1 & 1 & \end{array}\right] \quad G_{\sigma_{1}(C)}=\left[\begin{array}{llllllll}1 & & & & 1 & 1 & 1 \\ & 1 & & 1 & & 1 & 1 \\ & & 1 & 1 & 1 & 1 & \end{array}\right.$

Secret Sharing Schemes from Classical Codes

Now let us form a (CSS) stabilizer code with stabilizer matrix as follows.

$$
\begin{aligned}
& S=\left[\begin{array}{c|c}
G_{\sigma_{1}(C)} & \mathbf{0} \\
\hline \mathbf{0} & \rho_{1(C)^{\perp}}
\end{array}\right] \\
& =\left[\begin{array}{llllllll|lllllll}
1 & & & & 1 & 1 & 1 \\
& 1 & & 1 & & & 1 & 1 & & & & & & & \\
& & 1 & 1 & 1 & 1 & & & & & & & & & \\
& & & & & & & 1 & & & & 1 & 1 & 1 \\
& & & 0 & & & & & 1 & & 1 & & 1 & 1 \\
& & & & & & & & & 1 & 1 & 1 & 1 &
\end{array}\right]
\end{aligned}
$$

Encoding the secret

The secret is encoded into the encoded states of the quantum code and each qubit is given as a share.

For this stabilizer code the encoding for $|0\rangle$ and $|1\rangle$ is given as

$$
\begin{aligned}
|0\rangle & \mapsto|0000000\rangle+|1000111\rangle+|0101011\rangle+|0011110\rangle \\
& +|1101100\rangle+|1011001\rangle+|0110101\rangle+|1110010\rangle \\
|1\rangle & \mapsto|1111111\rangle+|0111000\rangle+|1010100\rangle+|1100001\rangle \\
& +|0010011\rangle+|0100110\rangle+|1001010\rangle+|0001101\rangle
\end{aligned}
$$

$$
|s\rangle \mapsto \sum_{c \in \sigma_{c}(C)}|s \cdot \bar{X}+c\rangle \text { where } \bar{X}=(1,1,1,1,1,1,1)
$$

Recovering the secret

Goal is to recover the secret accessing only the qubits in the authorized set.

The authorized sets are determined by the minimal codewords in C^{\perp}.

Algorithm 1 Recovering the secret

1: Input: $c \in C^{\perp}$, a minimal codeword with $c_{0}=1$
2: for $i \in \operatorname{supp}(c) \backslash 1$ do
3: Add the i th qubit to the first qubit
4: end for
5: for $i \in \operatorname{supp}(c) \backslash 1$ do
6: Add the first column to the ithe column
7: end for

Recovering the secret

Now consider a minimal codeword in C^{\perp} such that $c_{0}=1$. One such codeword is $(1,1,1,0,0,0,0,1)$. $\operatorname{supp}(c)=\{0,1,2,7\}$, Claim $\{1,2,7\}$ is an authorized set.

Recovering the secret

Now consider a minimal codeword in C^{\perp} such that $c_{0}=1$. One such codeword is $(1,1,1,0,0,0,0,1)$. $\operatorname{supp}(c)=\{0,1,2,7\}$, Claim $\{1,2,7\}$ is an authorized set.

$$
\begin{aligned}
|0\rangle & \mapsto|0000000\rangle+|1000111\rangle+|0101011\rangle+|0011110\rangle \\
& +|1101100\rangle+|1011001\rangle+|0110101\rangle+|1110010\rangle \\
|1\rangle & \mapsto|1111111\rangle+|0111000\rangle+|1010100\rangle+|1100001\rangle \\
& +|0010011\rangle+|0100110\rangle+|1001010\rangle+|0001101\rangle
\end{aligned}
$$

Recovering the secret

Now consider a minimal codeword in C^{\perp} such that $c_{0}=1$. One such codeword is $(1,1,1,0,0,0,0,1) . \operatorname{supp}(c)=\{0,1,2,7\}$, Claim $\{1,2,7\}$ is an authorized set.

$$
\begin{aligned}
|0\rangle & \mapsto|0000000\rangle+|1000111\rangle+|0101011\rangle+|0011110\rangle \\
& +|1101100\rangle+|1011001\rangle+|0110101\rangle+|1110010\rangle \\
|1\rangle & \mapsto|1111111\rangle+|0111000\rangle+|1010100\rangle+|1100001\rangle \\
& +|0010011\rangle+|0100110\rangle+|1001010\rangle+|0001101\rangle \\
|0\rangle & \mapsto|0000000\rangle+|0000111\rangle+|0101011\rangle+|0011110\rangle \\
& +|0101100\rangle+|0011001\rangle+|0110101\rangle+|0110010\rangle \\
|1\rangle & \mapsto|1111111\rangle+|1111000\rangle+|1010100\rangle+|1100001\rangle \\
& +|1010011\rangle+|1100110\rangle+|1001010\rangle+|1001101\rangle
\end{aligned}
$$

Recovering the secret

The key observation is that $\left|\psi^{\prime}\right\rangle=\left|\psi+\overline{X^{\prime}}\right\rangle$, where
$\overline{X^{\prime}}=(1,1,0,0,0,0,1)=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$.
So we need to transform $\left|\psi^{\prime}\right\rangle$ to $|\psi\rangle$.

$$
\begin{aligned}
& |s\rangle(|000000\rangle+|000111\rangle+|101011\rangle+|011110\rangle \\
& \quad+|101100\rangle+|011001\rangle+|110101\rangle+|110010\rangle)
\end{aligned}
$$

Recovering the secret

The key observation is that $\left|\psi^{\prime}\right\rangle=\left|\psi+\overline{X^{\prime}}\right\rangle$, where
$\overline{X^{\prime}}=(1,1,0,0,0,0,1)=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$.
So we need to transform $\left|\psi^{\prime}\right\rangle$ to $|\psi\rangle$.

$$
\begin{aligned}
& |s\rangle(|000000\rangle+|000111\rangle+|101011\rangle+|011110\rangle \\
& \quad+|101100\rangle+|011001\rangle+|110101\rangle+|110010\rangle)
\end{aligned}
$$

Correctness of Recovery

$$
\begin{aligned}
& \boldsymbol{S}=\left[\begin{array}{llllllll|lllllll}
1 & & & & 1 & 1 & 1 \\
& 1 & & 1 & & 1 & 1 & & & & & & & \\
& & 1 & 1 & 1 & 1 & & & & & & & & & \\
\hline & & & 0 & & & & 1 & & & & 1 & 1 & 1 \\
& & & & & & & & & & 1 & & 1 & 1 & 1 \\
& & & & & & & 1 & 1 & 1 &
\end{array}\right]
\end{aligned}
$$

Correctness of Recovery

\diamond Minimal codewords correspond to the undetectable errors of the quantum code
\diamond They also act as the encoded operators of the code
The first operation transforms the stabilizer so that the secret is in the first qubit. The second set of operations transform the encoded operator so that the the encoded states are disentangled from the first qubit.

Quantum Secret Sharing Schemes from Classical Codes

Let $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n+1, k, d]_{q}$ code such that $C^{\perp}=C$ with generator matrix G_{C} given as

$$
G_{C}=\left[\begin{array}{c|c}
\mathbf{1} & \mathbf{g} \tag{8}\\
\mathbf{0} & \sigma_{0}(C)
\end{array}\right]=\left[\begin{array}{l|l}
1 & \rho_{0}(C) \\
\mathbf{0} & \rho_{0}(.) . ~
\end{array}\right.
$$

Then there exists a quantum secret sharing scheme Σ on n parties whose access structure is determined by the minimal cdoewords of C and the dealer is associated to the 1 st , coordinate; Σ is encoded using the stabilizer code with the stabilizer matrix given by

$$
S=\left[\begin{array}{c|c}
\sigma_{0}(C) & \mathbf{0} \tag{9}\\
\mathbf{0} & \rho_{0}(C)^{\perp}
\end{array}\right]
$$

The secret is recovered using Algorithm 1.

Quantum Secret Sharing and Error Correction

Lemma (Cleve et al, 1999)

Suppose we have any set of orthonormal states $\left|\psi_{i}\right\rangle$ of subspace Q encoding a quantum secret. Then a set T is an unauthorized set iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| F\left|\psi_{i}\right\rangle=c(F) \tag{10}
\end{equation*}
$$

independent of i for all operators F on T. The set T is authorized iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad(i \neq j) \tag{11}
\end{equation*}
$$

for all operators E on the complement of T.

Informally,
 - Authorized sets can reconstruct the secret
 - Unauthorized sets cannot learn anything about the secret

Quantum Secret Sharing and Error Correction

Lemma (Cleve et al, 1999)

Suppose we have any set of orthonormal states $\left|\psi_{i}\right\rangle$ of subspace Q encoding a quantum secret. Then a set T is an unauthorized set iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| F\left|\psi_{i}\right\rangle=c(F) \tag{10}
\end{equation*}
$$

independent of i for all operators F on T. The set T is authorized iff

$$
\begin{equation*}
\left\langle\psi_{i}\right| E\left|\psi_{j}\right\rangle=0 \quad(i \neq j) \tag{11}
\end{equation*}
$$

for all operators E on the complement of T.
Informally,

- Authorized sets can reconstruct the secret
- Unauthorized sets cannot learn anything about the secret

Matroids

A set V and $\mathcal{C} \subseteq 2^{V}$ form a matroid $\mathcal{M}(V, \mathcal{C})$ if and only if the following conditions hold.
M1) $A, B \in \mathcal{C}$ if and only if $A \nsubseteq B$.
M2) If $x \in A \cap B$, then there exists a $C \in \mathcal{C}$ such that $C \subseteq(A \cup B) \backslash\{x\}$.
We say that V is the ground set and \mathcal{C} the set of minimal circuits of the matroid.

Matroids and secret sharing schemes are related by a correspondence between the minimal circuits and the access structure.

Vector Matroids

To every matrix G, we can associate a matroid.

$$
G=\left[\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1 n} \\
g_{21} & g_{22} & \ldots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{k 1} & g_{k 2} & \ldots & g_{k n}
\end{array}\right]
$$

The ground set is the set of columns of G and the minimal circuits of the matroid \mathcal{G} are the minimally independent columns of \mathcal{G}.

Matroids and Secret Sharing Schemes

Given an access structure Γ and a secret sharing scheme Σ that realizes Γ we can associate it to a matroid.

$$
\Gamma_{e}=\left\{A \cup D \mid \text { for all } A \in \Gamma_{0}\right\}
$$

$$
\begin{equation*}
\mathcal{C}(A, B)=A \cup B \backslash\left(\bigcap_{C \in \Gamma_{e}: C \subseteq A \cup B} C\right) \tag{12}
\end{equation*}
$$

$\mathcal{C}_{\Gamma}=\left\{\right.$ minimal sets of $\mathcal{C}(A, B)$ for all $A, B \in \Gamma_{0}$ and $A \neq B(13)$
If \mathcal{C}_{Γ} satisfies the axioms M 1 and M 2 , then we say associate the matroid \mathcal{M}_{Γ} to Γ with the ground set $P \cup D$ and the set of minimal circuits given by \mathcal{C}_{Γ} i.e.

$$
\begin{equation*}
\mathcal{M}_{\Gamma}=\mathcal{M}\left(P \cup D, \mathcal{C}_{\Gamma}\right) \tag{14}
\end{equation*}
$$

Matoids and Quantum Secret Sharing Schemes

Let $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n+1, k, d]_{q}$ code such that $C^{\perp}=C$ with generator matrix G_{C} given as

$$
G_{C}=\left[\begin{array}{c|c}
\mathbf{1} & \mathbf{g} \tag{15}\\
\mathbf{0} & \sigma_{0}(C)
\end{array}\right]=\left[\begin{array}{l|l}
\mathbf{1} & \rho_{0}(C) \\
\mathbf{0} & \rho_{0}
\end{array}\right] .
$$

Then there exists a quantum secret sharing scheme Σ on n parties whose access structure is determined the by vector matroid associated to C and the dealer is associated to the 1 st , coordinate; Σ is encoded using the stabilizer code with the stabilizer matrix given by

$$
S=\left[\begin{array}{c|c}
\sigma_{0}(C) & \mathbf{0} \tag{16}\\
\mathbf{0} & \rho_{0}(C)^{\perp}
\end{array}\right]
$$

Summary

\diamond Derived new secret sharing schemes based on CSS codes

- Strengthened the connection between quantum codes and secret sharing schemes
- Provided a new characterization of the access structure in terms of minimal codewords
\diamond Sketched some links between quantum secret sharing schemes and matroids

Thanks!

Summary

\diamond Derived new secret sharing schemes based on CSS codes

- Strengthened the connection between quantum codes and secret sharing schemes
- Provided a new characterization of the access structure in terms of minimal codewords
\diamond Sketched some links between quantum secret sharing schemes and matroids

Thanks!

