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What is a Microphone Array?

Spherical Microphone Array



Some Interesting Microphone Arrays
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Multi-sensor headset from MSR

MIT’s LOUD array [Liu et al. 2005]
(1020 mics)
Weinstein et al. 2005

A —

Version 2

NIST’s Mark Il Array
(64 mics)
Stanford et al. 2004
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Spherical Microphone Array

» ULA can measure azimuth (¢) only with front back ambiguity, where ¢ €
0, 7.

» UCA can measure azimuth (¢) and elevation (6) both, where, ¢ € [0, 27]
and 6 c [0, w/2].

» The spherical array can measure azimuth (¢) and elevation (6) both, where,
¢ € [0,2w] and 6 € [0, «].



Microphone Array Processing : Motivation

e Use of multiple microphones provides, at least in theory, exclusive
advantages over a single microphone.

e Signal enhancement : Suppressing the background and interfering signal,
achieved by filter and sum - important in any sound rendering

e Beamforming : Multiple microphones allow us to selectively capture sounds
from particular direction.

e Acoustic zoom effect : Direct sounds within the listening angular range are
amplified, while other sounds are suppressed.

e Adoption of multi-microphone techniques in practical systems has not
been popular until very recently.

e In real-life scenarios, the microphone array techniques provided insufficient
Improvement over single-microphone techniques, with increase in
computational complexity, and manufacturing costs.

e Because of increased computational power and evolution of compact
device technology, smartphone and hearing aid industries are utilizing
microphone array, which has recently become a standard for these devices



Microphone Array Processing (In) Parametric Spatial Sound Processing

User Settings
Direct Direct
D—— Storage
D - Microphone > q Processing gim:;t(s)
Signals Spatial Diffuse Transmission Diffuse and !
D* > Analysis q )'Synthesis " >
O— Parameters  (Optional) Parameters
- - - = — — — — )

Figure: 1: An overview of the parametric spatial sound processing scheme

e Parametric processing is performed in two parts.

e |n the first part, the sound field is analyzed in narrow frequency bands
using multiple microphones to obtain direct and diffuse sound components
and parametric information like DOAs and positions.

e |n the second part, the input signals are modified, and one or more output

signals are synthesized which is audio rendering.



Motivation : Socially Relevant Applications

iy

. [ I — e e s )
4 ; —
@D} D 3 (Cc =
Enhanced Quality "/»‘:;
of user’'s speech { i ]

Voice Enabled Smart-Home

(a) (0)

» Has daily life applications like localization and tracking of multiple sources,
estimation of number of sources, noise reduction, echo cancellation, dere-
verberation, cocktail party, assistive living etc.

» SMA can localize sources anywhere in the space with no spatial ambiguity.

» A general approach for spherical harmonics signal processing was pro-
posed in 2002. Most of source localization algorithms were proposed in last
five years.



Motivation : Automotive Applications

Acoustic analysis of cavities in aircrafts during
Interior sound localization in car operation



Motivation : Speech Enhancement and RecognitionApplications

Speaker y(n) S

H(z) x(n) + r(n)

Speech Enhancement

x(n)T Speech Recognition Block
DTV Controlled

Recognized Keyword

[_] Part A: Speech Enhancement
L] Part B: Speech Recognition

Version
of speech
Distorted Speech | Signal | Speech ——
i ecognition
Speech » Enhancement » Recognition * Results
Signal (Front end) (Back end)




Close Talking and Distant Speech Acquisition
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Far-field and Near-field Microphone Set-up’

» Far-field (Fraunhofer) region is defined by » > 2= . The Near Field (Fresnel)

is given by 0.62,/2% < r < 222,

» For far-field, the incident wavefront IS planar while for near-field the incident
wavefront is spherical.

» Far-field source localization refers estimating DOAs only, while near-field
source localization refers estimating DOA and range both.

1Courtesy : http://www.clearone.com/



Basic Concepts of Spatial Filtering

Material drawn from Stoica’s Slides (S13-S26)




Spatial Filter

e To pass the signal of interest only, hence filtering out
interferences located outside the filter's beam (but
possibly having the same temporal characteristics as
the signal).

e To locate an emitter in the field of view, by sweeping
the filter through the DOA range of interest



Spatial Filtering as a Detection Problem

Source 2
Source 1
Source n (e, V.. d
n® t\/ " J
> > )=
Omnidirectional I;reaar%?t @ | Output 5 AR
TR
270 .\ 20
g/ %
) = - Noise ® Noise®
Sensor m =
Sensor 1

Sensor 2

Problem: Detect and locate n radiating sources by using
an array of m passive sensors.

e The number of sources n 1s known. (We do not treat
the detection problem)

e Far-field sources in the same plane as the array of
Sensors




Time Delay Estimation in Spatial Filtering

the signal waveform as measured at a reference
point (e.g., at the “first” sensor)

the delay between the reference point and the
kth sensor

the impulse response (weighting function) of
sensor k

“noise” at the kth sensor (e.g., thermal noise in
sensor electronics; background noise, etc.)



Time Delay Estimation in Spatial Filtering

Then the output of sensor £ 1s

Yr(t) = hg(t) x z(t — 1) + €ex(t)

Then the output of sensor & is
Yr(t) = hi(t) x z(t — 71,) + ex(t)

Basic Problem: Estimate the time delays {7}, } with hy(¢)
known but z(¢) unknown.

we get the complex representation: (fort € 2)

yr(t) = s(t)Hi(we) e ek 4 e (t)

where Hp(w) = F{hy(t)} is the kth sensor's transfer
function

s(t) is the complex envelope of z(t)

Time delay 1s now =~ to a phase shift weTy:



Vector Data Model for a Single Narrow band Source

D
|

the emitter DOA

the number of sensors
Hl (wC) 6—2(.0(37-1

S
|

a(0)

Hm (wc) e—’iwcTrrz

: 61@ :

em(t)

— yl.(t) -

y(t) = e(t) =

i ym (1) |
Then

y(t) = a(0)s(t) + e(?)

NOTE: 6 enters a(#) via both {7} and { H;.(w¢) }.
For omnidirectional sensors the { H;.(we¢) } do not depend
on 6.



Vector Data Model for Multiple Narrow band Sources

received signals: {s(t)}7_4

DOAs: 0}
y(t) = a(01)s1(t) + - - - + a(bn)sn(t) + e(t)
Let
A=1la(01)...a(0,)], (m x n)

s(t) = [s1(t) ... sn()]', (n x 1)

the array equation is:

y(t) = As(t) + e(t)

Use the planar wave assumption to find the dependence of
7. on 6.



Computing the Time Delay

Source

dsinf

Sensor

Time Delay for sensor k:

dsiné

e
where ¢ = wave propagation speed

7, = (k—1)



Spatial Sampling (Theorem)

Let:
A dsin @ dsin@ dsin @
Wsg — We = 27 = 2T
¢ c/ fe A
A = c¢/fe = signal wavelength
a(d) = [l,e7@s ... e7i(m=Dws T

By direct analogy with the vector a(w) made from
uniform samples of a sinusoidal time series,

ws = spatial frequency

The function wgs — a(@) is one-to-one for
d| sin 6|
A/2

d = spatial sampling period

ws| < ™ >

<1+ |d< A2

d < A\/2is a spatial Shannon sampling theorem.



Spatial Filtering : Comparison with a Temporal Filter (FIR)

m—1
yp(t) = > hgu(t —k) = h*y(t)
k=0
h = [ho...h,_1]*
y(®) = [u(®)...u(t—m+ D))"

If u(t) = €™ then

yp(t) = [h a(w)] u(t)

filter transfer function

a(w) = [le @ ... e im—DwT

We can select h to enhance or attenuate signals with
different frequencies w.



Spatial Filtering : Comparison with a Temporal Filter (FIR)

h
(1) =i ry
[ >
I nuk
1 |g! g .
* || e ‘.é} &a(w)]u(t)
Y
m—1|q l \e—i(fm—l)w/
> \q_/
a(w)




Spatial Filtering (FIR)

{yr(t)}7 1 = the “spatial samples” obtained with a
SeNsor array.

Spatial FIR Filter output:

m

yp(t) = hiyr(t) = h™y(t)
k=1



Spatial Filtering (FIR) for Narrow Band Sources

Narrowband Wavefront: The array's (noise-free)
response to a narrowband (~ sinusoidal) wavefront with
complex envelope s(t) is:

y(t)
a(6)

a(0)s(t)

[1, e—zprQ o e_iwc”'?n]T

The corresponding filter output 1s

yr(t) = [h"a(6)] s(t)

filter transfer function

We can select h to enhance or attenuate signals coming
from different DOAs.



Spatial Filtering (FIR) for Narrow Band Sources

narrowband source with DOA=0

/ Lo

>—1->- reference point

1

>_2.. =i (0) [k*a(6)]s(t)

(Spatial sampling)



Spatial Filtering Beam (Directivity) Pattern for Narrow Band Sources

Example: The response magnitude |h*a(0)| of a spatial
filter (or beamformer) for a 10-element ULA. Here,

h = a(fg), where g = 25°

60

90

Magnitude



Time Delay/DOA Estimation Methods

Non Parametric Methods

Filter Sum Beamforming
Capon Beamforming
LCMV Beamforming

Parametric Methods
Non Linear Least Squares
MUSIC, root-MUSIC
Min Norm, Esprit

Correlation based Methods
GCC GLE-PHAT GO ROTH




Spherical Co-ordinate System

e Location of a source is given by r;, = (r;, V;), with W, = (6,, ¢)).

e Location of a receiver is denoted as r; = (r;, ®;), where ®; = (0;, ¢;).

e The range (r), elevation (#) and azimuth (¢) takes values as r € (0, c0),
0 € [0, 7], ¢ €]0,27)

Z
t (r. 0. )
| L2
I &
B
| Y
¥ >
7 - \k
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Vector Data Model for Far Field Sources in Spherical Co-ordinates

W

e A sound field of L far-field sources with wavenumber k = =< is incident

on an arbitrary microphone array of | microphones, | > L.

e In spatial domain, the sound pressure, p(t) = [p1(t), p2(t), ..., pi(t)]", is

written as,
p(t) = AWV, k)s(t) +v(t) ,t=1,2,---, N,

o A(V, k) is | x L steering matrix, s(t) is L x Ns vector of signal amplitudes
v(t) is | x Ns baseband additive white Gaussian sensor noise.

e The steering matrix A(W, k) is expressed as
AV, k) =la1(V1, k),ax(V,k),...,a.(V, k)], where
@® (V. k= :e_jk’Trl, e_jk’Trz, e e_jk’Tr’]T and k/ r; = weri (V)

o k) = —(ksinf,cos ¢;, ksinf;sin ¢;, k cos 9/)T, with 6, = /2 for ULA.

»r; = ((¢ — 1)d, 0,0)" for ULA and r; = (7 cos ¢;, r sin ¢;, 0) for UCA.
» Delay 71 (¥;) = —2<°*% for ULA and 7, (¥;) = —"20cos(@1=¢1) for YCA




Computing the Time Delay

e The position vector of i*" sensor in ULA is
ri=|[(i—1)d O O]T.

e The elevation angle 6 is 90° for an ULA. Therefore, the expression for
wavevector becomes

ki = — |kcos¢, ksin ¢ O]T.

e The propagation delay at the i sensor can now be written as

® (V)= (1= 1)dcosd
¢
® ¢

the steering vector for ULA takes the form as

a (¢, k) = (1 ekdcosd  gi2kdcosdy ej(l—l)kdcoscp,]-’
where k = =<

=121




Spatial Sampling (Theorem)

e A minimum sampling frequency (called Nyquist frequency) is required to
avoid aliasing in the time sampled signal, given by

‘ fS— Z fmax

_,_

where fn.x Is maximum frequency component in frequency spectrum of
signal.

e As signal i1s spatially sampled using antenna array, a similar condition on
spatial sampling frequency for exists to avoid spatial aliasing.

® f->>2%,

where f,_ Is spatial sampling frequency in samples per meter, d is spatial
sampling period and f,___is the highest spatial frequency component
present in spatial spectrum of the signal.




Spatial Sampling (Theorem)

e The wave vector k = —27/\ [sinfcos¢ sinfsing; cos6] , consists
of spatial frequencies in x, y and z directions. Each spatial frequency
denotes 27 times the number of cycles per meter.

e The spatial frequency (number of cycles per meter) in x-axis is given by

£ sin 6 cos ¢
Xs — )\ .

e Maximizing numerator and minimizing denominator vyields f,_. as below

max

®

e The Nyquist condition for alias free spatial sampling is given by

A

d < —
-2



Correlation Based Methods for DOA

Estimation and Beamforming



Correlation based DOA Estimation

e The time delay of arrival (TDOA) is computed between a pair of sensors.

e [he time delay corresponds to lag at which the cross-correlation is
maximum [6].

o The DOA is estimated from time delay using
— (/I — 1)d cos ¢,

C

Ti(W)) =

R
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Figure: Signal with length 512 samples, original signal (top) and signal delayed by 40
samples (bottom).



Plain Time Correlation

e The plain time correlation between two observed signals, pi(t) and p2(t) is
defined as

roves () = Ep1()p3 (t — ;)]
where [, is the lag and (.)" denotes complex conjugate.

e |n practice, the cross-correlation is estimated for any two finite signals as

N
sy = > pu(t)p3(t — Iy).
t=—1Ns
e [The TDOA can be estimated as
~p7Cc 1 SPTC (|
T = 3 argm/gax Foupy (lg).

where fs is the sampling rate.



Plain Time Correlation
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N
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Figure: Signal with length 512 samples, original signal (top) and signal delayed by 40
samples (bottom).
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Generalised Cross Correlation (GCC)

e |Implements frequency domain cross-spectrum with a weighting function.

e Assuming DFT of signal output be represented by p;(k) and p2(k), the
general expression for GCC is given by

roes (l) = F~H{w(k)p1(k)p5 (k)}

where F~! stands for inverse discrete-time Fourier transform and w(k) is
weighting function.

e The term w(k)pi(k)ps (k) is called generalized cross-spectrum.

e The TDOA estimate is obtained from the lag time that maximizes the
generalized cross-correlation, as

~ccc 1 GCe ()
T = g argmax Fovps (fg)
S g

e Now the DOA estimate computed from t"GCC



Generalised Cross Correlation (GCC)

e For w(k) =1, GCC degenerates to cross-correlation with implementation
through DFT and inverse DFT (IDFT).

e |In GCC-Roth method, a Roth filter weighs GCC by a factor of
auto-correlation of one of the signal.

e The Roth filter is given by

1
p1(k)pi (k)

e For reverberant environments, phase transform (PHAT) [7] weighting
function is used for TDOA estimation using GCC.

wWroTH (k) =

e The PHAT weighting function is given by

1
|p1(k)p5 (k)|

e [he PHAT filter normalizes the amplitude of the spectral density of the
two signal and utilizes only the phase information for computing the
cross-correlation.

WpHAT (k) =



Generalised Cross Correlation (GCC) : Comparison

4000 | | | | — | | |

<
28

o 2000+ | :
G

-0500 -400 -300 -200 -100 0 100 200 300 400 500

21 | | | | | | | | | |

1 ' ]

GCC-Roth

-q500 -400 -300 -200 -100 0 100 200 300 400 500
1

| | | | AL | | | | |

0.5 ]

GCC-Phat

| | | | | | | | | | |
-%00 -400 -300 -200 -100 1 0 100 200 300 400 500
ag-->

Figure: Generalized cross-correlation (GCC), GCC-Roth and GCC-PHAT plots (top to
bottom)



Digital Beamforming using Spatial Filtering

DSB, Filter and Sum, Capon Methods, and
Beampattern Analysis




Digital Beamforming using a Spatial Filter

e Beamforming is a spatial filtering technique where signal from a given
direction is passed undistorted, while signals from all other directions are

attenuated.
e |t is done by forming a beam in the look direction which is done by
weighting and summing the array outputs.

WA1
W2 Beamformer
Output
=

000 V

v
i



Digital Beamforming using a Spatial Filter

e The beamformed array output is given by
Po(t) = w''p(t)

T . . .
wherew = [w1  w, -+ wj|  is beamforming weight vector and (.)"
denotes conjugate transpose of (.).

e Power spectrum of the spatially filtered signal

E{|po(t)]’} = w 'Rpw, where, R, = E[p(t)p(t)"]

should give peak in DOAs.

e Different choice of weights leads to different beamforming techniques.



What is Beam (Directivity) Pattern of a Beamformer ?

eq&'bqe 0 | | | | l I | | |
Q\@‘\ -5 + |l
@ 10 F .
i i 15 - -
20 N
.25 il
S 30 | y
.35 il

m
=
| -
©
o
.40 il
.45 - il
1 N—-1 o 50 | | | | | | |
20 log 4 612”‘25"‘(‘9) 100 -80 -60 -40 -20 O 20 40 60 80 100
10 .
N = Arrival Angle {degrees)
90°
- 807
- 500Hz 0db
:1RHZ -30° 30°
ot _10d8
-80° —20dB 60°
‘ —-20db
-120° \ 120°
-10dB / »‘-9,400_. -
-150° . odB 150°
180° http://www.labbookpages.co.uk/audio/beamforming/delaySum.htm|



http://www.labbookpages.co.uk/audio/beamforming/delaySum.html

Direction - Frequency Beam patterns
(Directional Frequency Response)

Grating Lobe
Main Lobe

No Directionalit

Gain (dB). 10
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-35
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-80
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-40
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0
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40 2000

60 000 Frequency (Hz)

N
80 0

http://www.labbookpages.co.uk/audio/beamforming/delaySum.html



http://www.labbookpages.co.uk/audio/beamforming/delaySum.html

Delay Sum Beamforming

e Signal incident on array, suffers different delays at different sensors.

e The array output is delayed so that signal from desired direction is aligned.

e The aligned signals are summed, to realize a delay-and-sum beamformer
(DSB).

t2

|

mO I CQOW®
v

A R

mawn=—0 2




Delay Sum Beamforming

e The Delay-and-sum beamformer design problem is formulated as :

minw'’w subject to w'a(p, k) =1

wW

e Solution to the optimization problem, results in DSB weights as

_ a(, k)
k)

W

e The solution doesn't depend upon the input signal and only takes into
consideration the steering vector of the signal of interest. Hence, the
Delay-and-sum beamformers are not adaptive.

e The spatial power spectrum for DSB, can now be written as

E{|po(t)|’} = w"'Row @—

» Ppsg(¢) = a" (¢)Rpa ().




Delay Sum Beamforming for Speech Source Localisation and Enhancement

e Delay-and-sum beamforming DOA estimates are given by the location of L
highest peaks corresponding to L sources in DSB spatial power spectrum.

e DSB based soured localization is inconsistent when multiple sources are
present. Bias of the estimates also become significant for closely spaced v
and correlated sources.

Target
wavefront . _
~t, . oteering Signal
= " delay stage alignment
nhh ,'? .{ t ," |
Ta i LA M Al
- . - \ [}V 2 1
- ¥ S ) |
S S \ D SN |
T i et - } M|, -
o S 1 \ Z / "
S , -
. - CI . . - 0 \ lJ
Noise/
interference o -
= 4 || V 2 \
wavefront ..~ |
- "’; - \\\\ A P
- - ,{\ Z } | _o
- s 0

http://www.labbookpages.co.uk/audio/beamforming/delaySum.html



http://www.labbookpages.co.uk/audio/beamforming/delaySum.html

Beam Pattern Analysis for ULA

e Beampattern (directivity pattern, array pattern or spatial pattern) is
defined as the magnitude of the spatial filter's directional response.

e For given weight vector w of a beamformer, beampattern specifies the

response of the beamformer to a source arriving from the arbitrary
direction in the field of view of the array.

e Beampattern is typically measured as the array response to a single plane
wave.

e [he beamformed output can be written as
po(t) = w'p(t) = w'a(W, k)s(t) + wv(t)

where wa(W, k) is directional response of an array.

e Assuming ULA aperture, steered to direction ¢s, the delay-and-sum
beampattern for a ULA can be written as

G(¢, bs) = W' (ds)a(o, k)]



Beam Pattern Analysis for DSB

e Utilizing the DSB weight the beampattern for the ULA is given by

G(6,6:) = 71" (6, K)a(@, k)

where [(.)| is absolute value of (.).

e Substituting the expression for steering vector beampattern for a
ULA can be written as

/
1 (1—1)kd(cos(¢@)—cos( s
G (b, bs) n Z ol (i —1)kd(cos(9) (¢s))
1=1

sin (% ( cos(¢) — C05(¢s)))
[ sin (%d ( cos(¢) — cos(qf)s)))

e Narrowband beampatterns of a delay-and-sum beamformer, is illustrated
without spatial aliasing and under aliasing.




NI gl T

Beam Pattern Analysis : Non Aliased case for DSB

Beam Pattern Analysis : Non Aliased Case for DSB
e A ULA with 10 sensors are used for this, with steering angle ¢s = 90°.

0 I [ [

100 | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Azimuth(o)

(a)

Figure: Delay-and-sum beampattern for ULA with no spatial aliasing for [ = 10,
¢s = 90° and d = 0.5\ (a) in Cartesian coordinates and (b) in polar coordinates



Beam Pattern Analysis : Aliased case for DSB

e A ULA with 10 sensors are used for this, with steering angle ¢ = 90°.

™
-w\m b | (\[

_60 1 | | 1 ! 1 1 1
0 20 40 60 80 100 120 140 160 180

Azimuth(o)

(a)

Figure: Delay-and-sum beampattern for ULA under aliasing for [ = 10, ¢s = 90°
and d = 2\ (a) in Cartesian coordinates and (b) in polar coordinates. ‘




Filter And Sum Beamforming

Design a filter ~(6) such that for each 6

It passes undistorted the signal with DOA = 6

It attenuates all DOAs = 6

Sweep the filter through the DOA range of interest,
and evaluate the powers of the filtered signals:

E{lyr(t)|?} E{R*@)y®)|?}  R=E{y®)y* ()}
h*(0) Rh()

The (dominant) peaks of h*(0) Rh(0) give the
DOAs of the sources.



Filter And Sum Beamforming

Assume the array output 1s spatially white:

R=E{y(t)y ()} =1
Then: F {|yF(t)|2} ==ilt"h

Hence: In direct analogy with the temporally white
assumption for filter bank methods, y(t) can be
considered as impinging on the array from all DOAs.



Filter And Sum Beamforming

Filter Design:

mhin (h*h) subjectto h*a(f) =1

Solution:

h = a(8)/a"(0)a(8) = a(0)/m

E{lyr(D)I?} = a*(6)Ra(8)/m?



Implementation and DOA Estimation in
Filter And Sum Beamforming

E{lyr(D)?} = a*(0)Ra(6) /m

. 1 X )
R= = t; y(£)y*(t)

DOA estimates are  {#.} = the locations of the n largest peaks of

a*(0)Ra(6).
Resolution Threshold:
length
inf |0, — 9p\ N waveleng
array length

= array beamwidth

Beamforming DOA estimates are consistent if n = 1, but
inconsistentif n > 1.



Capon/ MVDR Beamforming

e Capon beamformer is adaptive in the sense that it takes into account the
signal characteristics along with the steering vector of the signal of
interest.

e |t is based on maximizing the signal to interference plus noise ratio
(SINR), defined as

_ Elw"a(¢)s(t)]* _ o5lw"a(¢)[”
S ElwHv(t))2 wHlRw

where o2 is signal power for an individual source signal and
R, = E[v(t)v(t)].

e Maximizing SINR results in minimizing w”R,w.

e Distortionless response gives w'’a(¢) = 1.
e —

e Hence, minimum variance distortionless response formulation of capon
beamformer is given by

minw R,w subject to w'a(¢) =1
w




Capon/ MVDR Beamforming

e Solution to the constrained problem

Rv—la(¢)
al(¢)R, " *a(9)

e However, R, ! is not available in practice. Therefore, R, is used in place
of R,.

e This results in final form of weight vector as

Rp_la(¢)
al(¢)Rp"a(o)

e Utilizing the expression for MVDR weights  power spectrum for MVDR can written as

e 1
MYOR T a(@)R, 1a(0)

The MVDR DOA estimates can be given as L largest peaks in the MVDR
power spectrum corresponding to L sources.




Capon/ MVDR Beamforming versus DSB

e DOA estimation using DSB and MVDR power spectrum is illustrated in

the Figure.
e A ULA with 10 sensors was used. The sources are assumed to be at 20°
and 60°.
1 ; 14
lj ' 1.2
80 | 1
'
40 04
20 0.2
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Figure: DOA estimation using (a) DSB and (b) MVDR method. A ULA with
| = 10 sensors was used for sources located at 20° and 60°.



Comparison of Capon and DSB For Narrowband Signal

» Number of sensors taken is N=10.

» Sine and cosine wave for signals.

» Frequency range of the signals lie between 2000-2005
» DOA of signal of interest is 30°.

» Interfering signal has a DOA of 40°.
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Comparison of Capon and DSB For Broadband Signal

» Number of sensors taken is N=10.
» Speech signals are taken for signal of interest and interfering signal.
» DOA of signal of interest is 30°.

» Interfering signal has a DOA of 40°
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Capon/ MVDR Beamforming versus DSB : Comments

» Beampattern of Capon has severe attenuation in interfering direction at all
the frequencies.

» Beampattern of Delay-and-sum beamformer does not have any null in inter-
fering signal’s DOA.

» In presence of interference Capon can reconstruct the signal of interest ex-

actly whereas Delay-and-sum beamformer cannot completely filter interfer-
ence.



Quadratically Constrained Capon Beamformer

» Additional Constraint on norm of weights for MVDR.
Iw|[* = Ty

where w is the weight vector and T, is a design parameter.

» The new constrained problem can be written as,

min WTR.UW
= .

subjectto s'w =1
Iw|[* = Ty

where s corresponds to steering vector.



Quadratically Constrained Capon Beamformer

» Previous constrained problem is solved using Lagrange multiplier.
» The solution for the weight vector can be written as,

wH — SH(Ry -+ All)_l
 s%R, + D)7 s

» Value of \; depends on choice of T;.

(Ry + All)_]
(Ry <t ’\ll)—-1

» Leads to diagonal loading.



Performance of Quadratically Constrained MVDR
For Narrowband Signals

» Number of sensors taken is N=10.

» Sine and cosine wave for signals.

» Frequency range of the signals lie between 2000-2005 Hz.
» DOA of signal of interest is 30°.

» Interfering signal has a DOA of 40°.

» A\ is choosen as 0.5.
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Performance of Quadratically Constrained MVDR
For Broadband Signal

» Number of sensors taken is N=10.

» Speech signal is taken as signal of interest.
» Speech signal is taken as interfering signal.
» DOA of signal of interest is 30°.

» Interfering signal has a DOA of 40°.

» )\, is taken as 0.5. » Less attenuation of interfering signal.
» More emphasis on white noise.

» Not perfect cancellation of interfering signal.
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Performance of Beamformers Under DOA Estimation Error

» Comparison for Capon and Delay-and-sum beamforming method is pro-
vided.

» Number of sensors taken is N=10.
» Speech signal is taken as signal of interest.

» No interfering signal is taken.
» DOA of signal of interest is 35°. » Delay-and-sum beamformer output is not affected much.
» Capon Output is deteriorated severely.

» Estimated DOA is taken as 30° A . R
» Actual signal is taken as interfering signal.
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Digital Beamforming using Linearly

Constrained Minimum Variance (LCMV) Filter,
Generalised Sidelobe Canceller (GSB)




Linearly Constrained Minimum Variance (LCMV) Beamforming

» MVDR beamformer imposes a linear constraint,
wa(¢) = 1

» Lacks robustness to interference sources.

» Additional linear constraints are added to realize LCMV and LCMP| beam-
formers.

» LCMV uses R,, while LCMP uses R,,.
» LCMV beamformer minimizes,

P, = w'Rw

under the constraint, w”C = g, or C"w = g where C is a NXM. con-
straint matrix where columns are linearly independent.

» LCMP beamformer minimizes,
P, = w"Rw

under the constraint, w”C = g, orC?w =g



Linearly Constrained Minimum Variance (LCMV) Beamforming

Types of constraints in LCMV beamformers

N)istortionless Constraints,

wa(¢) =1

It guarantees that signal from direction @ will pass through undistorted
N)irectional Constraints,

’wHa'(¢i) = gi

where : = 1,2,.., My and ¢; denotes DOA along which we want to impose
the constraint g; which is a complex nhumber in general.

For example:
wa(¢p;) =1
and
wa(¢p; + Ag;) =1
wa(p; — A¢;) =1
C = la(¢;)ia(P; + Ad;)ia(p; — Ag;)]
g=1[11]"
and,

wlC = g”




Linearly Constrained Minimum Variance (LCMV) Beamforming

Nlull Constraints, applied when interference coming from known direction,
wa(¢;) =0
where : = 2, .., M, Thus,

C = la(dm)ia(p2)ia(ps)ia(pnrro)]

g =[100...0]

» MVDR beamformer puts a perfect null on directional noise when o7/02 is
infinite. o%: variance of directional noise
o2 : variance of white noise

» A better constraint would be
wHa(qbi) = €

where : = 2,3, .., M, and ¢; is related to o7 /o2



Linearly Constrained Minimum Variance (LCMV) Beamforming
Derivative constraints

used to maintain a particular shape of the

beampattern near the peak or the null

e set beam pattern derivatives with respect to 6 and ¢
o set power pattern derivatives P(w, 6, ¢) at 6 and ¢
o set frequency derivatives P(w, 0, ¢) with respect to w



LCMV Beamformer : Beampattern Analysis

» Number of sensors taken is N=5.

» Speech signals are used as signal of interest and interfering signal.
» DOA of SOl is taken as 60°.

» One interfering signal is taken with DOA as 30°.

» Another interfering signal is taken with DOA as 80°.



LCMV Beamformer : Beampattern Analysis
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LCMV Beamformer : Beampattern Analysis

(dB)
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Beampattern for doubly constrained beamformer for signal of interest DOA as 60° and
interfering signal DOA as 80° for a 5 microphone array.
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LCMV Beamformer : Beampattern Analysis

I%_gceive Attenuation(dB)

Frequency (in Hz)
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Beampattern for beamformer designed for signal of interest DOA as 60° and interfering signal
DOA as 80° and at 30° for a 5 microphone array.
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LCMV Beamformer : Beampattern Analysis

» Null has been created at multiple DOAs.

» Performance depends on number of sensors which decide the degree of
freedom.

» Null at multiple DOAs pulls down the beampattern over a range of non-look
direction.

» Performs well under correlated interference.



Generalized Sidelobe Canceler (GSC) Beamforming

» The GSC consists of three basic part: Beamformer (e.g. Delay
and sum beamformer, MVDR), Blocking matrix and Adaptive
filter.
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Generalized Sidelobe Canceler (GSC) Beamforming

» The GSC splits the traditional beamformer into two
orthogonal sub-spaces: the first subspace satisfies the
constraints, and thus ideally contains undistorted desired
signal.

d(k) =S (k)wc(k)

» Second subspace (lower path in Fig) is orthogonal to wc(k).
Orthogonality is assured by an matrix B(k), which is
orthogonal to each column of S(k).

ST (k)B(k) =0

B(k) is called Blocking matrix.



Generalized Sidelobe Canceler (GSC) Beamforming

» |deally, the output of blocking matrix fitler does not contain
desired signal components, and thus is a reference for the
noise.

» Then using Adaptive filter is used to minimize error using
noise reference signal in output obtained in first path.

» Final output of GSC is given by
& = (we(k) — B(k)wa(k)) " S(k)

Where w, is adaptive filter coefficients matrix



Digital Beamforming using Subspace based

Methods
MUSIC, root-MUSIC, and MUSIC-Group Delay




Subspace based Methods : MUSIC

Correlation-based and beamforming-based source localization methods are
limited by resolution ability.

The methods fail in multi-source environments when sources are closely
spaced.

The limitation arises because these methods do not exploit the sensor
array data efficiently.

Schmidt proposed MUItiple Slgnal Classification (MUSIC) algorithm [5],
based on decomposition of array covariance matrix into noise and signal
subspace.

pi(t) =i(t)
p2(t) s2(2)

= [a1(¢1, k) a2, k) - au(en, k)] | .| +v(2)
pi(t)_ ().

p(t) = As(t) + v(t)




Subspace based Methods : MUSIC

p(t) = As(t) + v(t).

e The array covariance matrix can be written as
R, = E[pp"] = E[Ass"A"] + E[w"]
= ARA" + 5°1 =R; + &’

e R; is signal covariance matrix given by

"E|s1%] 0
2
R, =E[ss"]=| O  Ell=ll - 8
B E[‘SL|2]:_

and | is identity matrix.

¢ Rs is an L x L diagonal matrix that has all the eigenvalues positive,
making Rs to be positive definite matrix.

e Steering matrix A comprises of steering vectors which are linearly
iIndependent. Hence, A has full column rank.



Subspace based Methods : MUSIC

e Full column rank of A and positive definiteness of Ry guarantees that,
when number of sources L is less than number of sensors /, the | x |
matrix R; is positive semidefinite with rank L.

e |t implies that /| — L eigenvalues of R; will be zero.

. th . . .
e Assuming q, to be u™ eigenvector corresponding to zero eigenvalue, we
have

H
Riqu = ARGA qQu — 0
H H
q’ARA"q, = 0
e As Rs is positive definite matrix, the following condition holds.

A"q, =0
aﬁ(d)/)qu:OV/:l,Z,--- L and Vil =12 yemn gl



Subspace based Methods : MUSIC

a(é)qu=0v/=1,2,--- ,Land Vu=1,2,---,1 — L.

implies that all the (/ — L) noise eigenvectors (q,) are

orthogonal to the L steering vectors.

e All such noise eigenvectors are denoted by Q,, as a / x (/ — L) matrix. Q,
Is called the noise subspace.

e The MUSIC spectrum is formulated as

1 1 1

Pumusic(¢) = S 2% (6)qu]? ~ 1Q%a(0)|? ~ (af(4)Q.QHa(s))

e As the noise eigenvector is orthogonal to steering vector, the denominator

becomes zero for ¢ = DOA.

e Hence, the DOA is estimated from the L largest peaks in MUSIC spectrum
corresponding to L incident sources.



Subspace based Methods : Implementation of MUSIC in
Practice

e |In practice, array covariance matrix Rp is available for processing, not R;.

e R, is to be estimated from sample covariance matrix for N; snapshots as

] =

R, = N. Z P(t)PH(t)

t=1

e When the data is Gaussian, the sample covariance matrix converges to
true covariance matrix.

e Now, let q; be any eigenvector of R; with eigenvalue as A;, then

Riqi = \iq;
R,q; = Riq; + o°lq;
= (Ai + o%)q;

e |t means that any eigenvector of R; is also an eigenvector of ﬁp with
eigenvalue as (\; + 02).



Subspace based Methods : Implementation of MUSIC in Practice
e So, if R; = QAQ" then

R, = Q[A + o°1]Q"

A1+ o° 0 0 0 -+ 07
0 A +o0° .- 0 0o --- 0
R,=Q| 0 0 Xito® 0 0| Q"
0 0 0 o 0
0 0 0 0 = gl

e The eigenvector matrix Q is decomposed into signal subspace Qs and
noise subspace Q,.

e The eigenvectors corresponding to the highest L eigenvalues, form the
signal subspace matrix of order [ x L.

e The other | — L columns of Q (noise eigenvectors) form noise subspace,

Q. with eigenvalues o’

e Now the MUSIC spatial spectrum can be computed as
1

Puusic(¢) = (a"(¢)Q.Qfa(¢))




Subspace based Methods : MUSIC for Broadband Signals

There are two variants of non cohorent wideband DOA estimation: NCO1 and
NCOZ2 which use spectral MUSIC as a tool. The NCO1 estimate is given as

0= argmin 275" (w;)Qn(w;)Qy ()5 (w;)

where L is the no of frequency bins, S(w;) and Q,(w,;) are the noise subspace and

array steering vector at frequency (w;). Similarly, the NCO2 estimate is

N OSH(wg)Qn( §)Qn (w;) S (w;)

. 1
f = argmax X~

It turns out that NCO1 and NCO2 perform similarly even though their

formulations are quite different.




Subspace based Methods : MUSIC-Group Delay

» MUSIC-Group delay spectrum is defined as

Pmep(¢) = Z Varg(a™(¢)au)|”) Pmusic ()

where V arg indicates gradient of unwrapped phase spectrum of

(" (o)qu).

e The gradient is with respect to the spatial variables ¢.
e A sharp transition at the DOAs is observed in unwrapped phase spectrum
of MUSIC.

e Gradient of the unwrapped phase spectrum (group delay of MUSIC)
results in sharp peaks at the location of the DOAs.

¢ |In practice, abrupt changes can occur in the phase due to small variations
In the signal caused by microphone calibration errors. This leads to
spurious peaks in group delay spectrum.

e However, the product of MUSIC and group delay spectra, called

MUSIC-Group delay [6], removes such spurious peaks and gives high
resolution estimation.

\



Subspace based Methods : MUSIC and MUSIC-Group Delay
over a UCA

» The MUSIC-magnitude spectrum is given as

1 1

N—-M - ||Q£I-3(9’ ®)||°
1s(6, ¢).q:|?

Priusic(8, @) =

where s(0, ¢) is a particular steering vector which forms S and Q,, is the
N x (N — M) matrix of eigenvectors spanning the noise subspace. g; is a
particular eigenvector which forms @,

» The MUSIC-Group Delay for DOA estimation over UCA is defined as

N-M
Priep(6, @) = ( Z |V arg(s™ (8, ¢).4i)|*)-Puusic(8, ¢)

1=1

where V arg indicates gradient of the argument of s (8, ¢).q;



MUSIC and MUSIC-Group Delay: Some DOA Estimation
Results
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Figure: MUSIC, Unwrapped phase (of MUSIC) and MUSIC-Group delay spectra for
two sources with azimuth (a) 60° and 65°, (b) 50° and 60°.



MM vs MGD for Sources at (a) 60° and 65° (b) 50° and 60°
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Spurious peak removal using product spectrum
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MUSIC Magnitude and MUSIC phase Spectrum
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(a) Spectral magnitude of MUSIC for UCA (top) and ULA (bottom). (b)Spectral phase of MUSIC for
UCA (top) and ULA (bottom). Sources at (15°,50°) and (20°,60°) for UCA. Sources at 50° and 60°
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Group Delay and MUSIC-Group Delay Spectrum
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(a) Standard group delay spectrum of MUSIC for UCA (top) and ULA (bottom) (b) MUSIC-Group
delay spectrum for UCA (top) and ULA (bottom).



Additive Property of MUSIC-Group Delay Spectrum [Expand]
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Subspace based Methods : root-MUSIC

e The accuracy is limited by the discretization at which the spectrum
(PMVDR(Cb), PMUSIC(¢), or PMGD(¢)) Is estimated.

e Moreover, it requires a comprehensive search algorithm for deciding
candidate peak corresponding to DOA of a source.

e root-MUSIC proposed in [8], is a search free algorithm, and it estimates

DOAs as roots of MUSIC polynomial. Hence, the solution is exact and not
limited by the discretization.

e The MUSIC spectrum can also be written as

Prusic(¢) =a" (6)Q.Qna(o)

= a"'(¢)Ca(¢)
where, C = Q,Q"
e Substituting z = &*?**(?) in Equation 28, steering vector for ULA can be
expressed as a() = [1 o o awm z’—l] 7§



Subspace based Methods : root-MUSIC

written in a polynomial form (called root-MUSIC polynomial), as shown

below.
-1 /-1

-1 e Thal TR, —m
music(z) = Z 2 4 CmnZ
m=0 n=0

I-1 /-1

Flz)= 2: g o

m=0 n=0

Substituting n — m = r which suggests

(1-1)
P(z)

|
(]
)
N\

where, C, = Z £

e |t can be observed that the root-MUSIC polynomial is of degree (2/ — 2)
with (2/ — 2) roots.



Subspace based Methods : root-MUSIC

e |f z is the root of the polynomial, Z—,., Is also the root.Since, z and = have
the same phase and reciprocal magnitude, one root is within the un|t circle

while the other is outside.

e Hence, (/ — 1) roots are within the unit circle and rest (/ — 1) roots are
outside. Out of (/ — 1) roots within the unit circle, L roots close to unit

circle can be used for DOA estimation.

e The azimuth is estimated using

b — cos— {\sln(z)}

where & is imaginary part.



Subspace based Methods : root-MUSIC

e The azimuth is estimated using

Sin(z
6 = cos H{mZ),
where § is imaginary part. 2
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Figure: Z-Plane representation of all the roots of root-MUSIC polynomial using 8
sensors for 2 sources with locations 130° and 140°.



Applications to Speech Source Localization,

Enhancement, and Distant Speech Recogntion




Speech Enhancement and Recognition Experiments : ULA
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Speech Enhancement and Recognition Experiments : ULA

Source

v Reflected Wave
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» A speech signal captured using a distant microphone is
smeared due to reverberation

» Reverberation i1s a phenomenon in which multiple delayed and
attenuated versions of a signal are added to itself



Speech Enhancement and Recognition Experiments : ULA

Reverberated Speech
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» Perceptually we can interpret the reverberated speech signal
as the same source signal coming from several different
sources at different locations in the room

» Reverberation causes loss in intelligibility of speech.

» The characteristics of the speech signal are altered due to
reverberation which causes significant reduction of
performance in voice based applications



Speech Enhancement and Recognition Experiments : ULA

Analysis under reverberation

» The persistence of sound due to multipath is called reverberation

» Mathematically the multipath is modeled using original signal convolve:
with room impulse response (RIR)

r=pxh-+n

where h is RIR.
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Typical room impulse response, DRR 7.83dB




Speech Enhancement and Recognition Experiments : ULA

Analysis under reverberation

» The Direct to Reverberant energy ratio is calculated as the ratio of the en-
ergy in direct sound to the energy of the remaining impulse response

[ 3 2 )

DRR = 10log;, | —2=° dB

where n, is direct path component.

» The reverberation time, T§,, is time taken taken for the reverberant energy
to decay by 60 dB.

» Higher the DRR implies lower reverberation time.



Speech Enhancement and Recognition Experiments : ULA

Test bed for distant speech acquisition over a ULA

Linear Array
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4 microphones, each separated by 10 cm.

Room Height : 3.4 m
< 7.3 m >




Speech Enhancement and Recognition Experiments : ULA

Experimental conditions for acquiring TIMIT Data over a ULA

» A room with dimensions 7.3m X 6.2m X 3.4m was used for experiments.
The sources are placed at the following two locations with respect to one of
the corners of the room.

Source -1 : [3.5 2.36 1.5]7
Source - 2 : [2.5 2.32 1.5]7

» A 4-element Uniform Microphone Array (ULA) with a spacing of 10 cm was
used to perform the DOA estimation. The microphones were located at:

Mic - 1 : [3.0 2.5 1.0]”
Mic - 2 : [3.0 2.6 1.0
Mic - 3 : [3.0 2.7 1.0
Mic -4 : [3.0 2.8 1.0

N NN




Speech Enhancement and Recognition Experiments : ULA

Reconstructing Speech using DSB beamformer for ASR Experiments
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Speech Enhancement and Recognition Experiments : ULA

Speech recognition experiments

Word Error Rate (% WER)
Method | Recognition |Recognition |Recognition |Recognition
Clean DRR=20dB DRR=13.77dB |DRR=7.96dB
CTM |7.48 11.55 14.45 21.95
MGD |25.56 39.44 42.77 46.65
RM [ 35.19 23.64 60.48 62.87
MM |50.61 94.69 63.92 67.44
GCCP |50.61 59.33 63.92 67.87
GCCR |53.77 61.45 70.75 7217
Large Vocabulary Speech Recognition performance of various DOA Estimation methods on S-TIMIT
Data
Word Error Rate (% WER)
Method | Recognition | Recognition |Recognition |Recognition
Clean DRR=20dB DRR=13.7/7/dB |DRR=7.96dB
CTM [11.78 21.66 27.88 29.76
MGD |15.98 25.66 33.11 35.44
RM [19.06 31.66 36.88 43.66
MM |20.55 35.78 40.55 44 .35
GCCP |23.66 38.77 42.65 44.77
GCCR [24.63 36.89 4419 46.53

Comparison of continuous digit speech recognition performance of two spatially contiguous speakers

iIn @ meeting room for various methods on the MONC database




Speech Enhancement and Recognition Experiments : UCA

Experimental Setup

» Meeting room with two speakers (S1 and S2) and two interference (sta-
tionary noise source SN and non-stationary noise source NS), located at

(17°,35°), (19°,40°), (15°,30°) and (21°,45°) respectively.
» Uniform circular, 15 channel microphone array with a radius of 10 cm was

used.

» White noise and babble noise from NOISEX-92 database were used as sta-

tionary and non-stationarv interferina sources respoectivelv.
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Speech Enhancement and Recognition Experiments : UCA

Estimate ompute Train DSR/SIR
DOA TDOA FSB Expt.

Methodology Followed in Performance Evaluation



Speech Enhancement and Recognition Experiments : UCA

» Proposed method is evaluated by computing objective measures of percep-
tual evaluation on enhanced speech.

» The objective measures are, Log-Likelihood Ratio measure (LLR) [20], seg-
mental SNR (segSNR) [20], Weighted-Slope Spectral (WSS) distance [21]
and Perceptual Evaluation of Speech Quality, PESQ [22].

» PESQ and segSNR scores should be high while LLR and WSS scores should
be low for better reconstruction.

» Desired speaker and stationary noise source pair is considered for evalua-
tion.

» Six hundred sentences from TIMIT database were taken.

Method | T, | LLR [SegSNR| WSS | PESQ

MGD 150|1.3879| -3.1843 | 35.5345|2.2819
250|1.6193 | -4.8298 | 36.7986 | 2.2229
150 1.62 | -3.1847 | 35.6 [2.2815
250(1.6487| -4.9995 | 37.73 |2.2215
15011.6657| -3.2 |35.5639| 2.28

25011.6878| -5.108 [38.5765| 2.2

150 1.668 | -3.22 36.2 |2.2826
25011.6994 | -5.095 |40.03212.1746
150| 1.67 -3.4 36.4 |2.2815
25011.7379| -5.0356 [40.0647|2.1753

MM

BSM

LCMV

MVDR




Speech Enhancement and Recognition Experiments : UCA
Experiments on Speech Enhancement [SIR]
Output SIR Output SIR Output SIR
INput SIR |-~ 4 50ms) (200ms) (250ms)
Methods |Source | S°™[S§™ |8 |87 |[§» [§7s [§» [§n3
MGD Ch 10 |5 [45.698[36.085]40.674|34.472[40.220|33.751
S5 10 |5  |46.093|43.001|41.835|35.358 |40.348 | 21.822
- Ch 10 |5 |42.578|31.257|36.575|30.566 | 35.055 | 30.247
S3 10 |5  |45.546|29.242|42.003|25.343 |38.745 | 21.795
BSM S3 10 |5 [39.332]27.270/38.995|25.898 | 38.821 | 24.588
S3 10 |5 |39.857|28.770|38.29127.072|37.990 | 25.613
Lemy | S0 10 |5 [33.096|27.365|30.872|25.263|30.189|23.032
S5 10 |5 |34.086|26.735|32.089|25.145(28.0 |23.627
N 10 |5 [34.776/23.022|26.289 |22.61 |25.052|22.184
S 10 |5 |33.005|24.696|31.058|23.505|27.759 | 19.362




Speech Enhancement and Recognition Experiments : UCA

Experiments on distant speech recognition

» DSR result is presented as word error rate (WER).

» WER is given by W ER = 100 — (o=t WatWi)) 1,

» TIMIT and MONC both databases were used.

reverberation time

s] S5
T60 TGO TGO TGO
Methods | CTM| 156ms)| (250ms) | (150ms) | (250ms)
MGD 12.08 [23.96 1199 |23.58
MM 1421 [26.01 1378 2556
MONC BSM 9.2 (1502 (2799 15200 27.32
LCMV 1659 [29.04 163  28.39
MVDR 17.04 30.16 | 16.96 |29.86
MGD 881 1579 9.16  16.02
MM 1015 18.06 1092 |18.68
TIMIT BSM  6.73 [10.98 |19.16 121  20.12
LCMV 1218 2044 1525 [21.67
MVDR 14.08 2247 17.41 | 24.37




A General Framework for ASR using Microphone Arrays

a
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\

Processor

J

Feature

Extraction

Source : Bhiksha Raj CMU



WER versus Reverberation Time
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Microphone Array based Speech Recognition : LIMABEAM

» Likelihood Maximizing Beamforming
[Seltzer 2004].

— specifically targeted at improved speech
recognition performance without regard to
conventional signal-domain objective criteria.

* \WWant an objective function that uses

parameters "The correct transcription”

X
MIC,0—1—»

~

X
MIC,0—*—»

FE —> ASR +’g

minimize £

X
MIC; 0——»

(S

— — — =
N

AN

X
MIC,0—4»

Source : Bhiksha Raj CMU



Unsupervised LIMABEAM

This is my estimated trans...[¢—
STATE SEQ
> ESTIM
h,(n) ASR

1 -

hy(n)

MIC,,

Source : Bhiksha Raj CMU



Databases for Microphone Array based Speech Recognition

« Small publicly available corpora (these are just a handful)
— CMU Microphone Array
« http://www.speech.cs.cmu.edu/databases/micarray
— CMU PDA
« http://www.speech.cs.cmu.edu/databases/pda
— |IDIAP Multi-channel Overlapping Numbers
« http://www.cslu.ogi.edu/corpora/corpCurrent.html
— |ICSI| Meeting Recorder Digits
« http://'www.icsi.berkeley.edu/Speech/mr/mrdigits.html

 Many sites have collected large corpora for research involving
meeting transcription and annotation

— |CSI| Meeting Recorder project

« http://'www.icsi.berkeley.edu/Speech/mr
— CHIL project

« http://chil.server.de
— AMI project

« http://www.amiproject.org

Source : Bhiksha Raj CMU



Rapid Prototyping (on NI- cRIO) of an Intelligent Meeting Capture System using
Microphone Array Processing

Controller Host Computer Chassis

10 Modules

Peripherals

AC Power Supply

DC Power
Supply




Modular Blocks Required in a Meeting Capture System

» Speech Acquisition Module
» DOA Estimation Module

» Motor Steering Module

» Video Acquisition Module

Speech L bwﬂ:> DOA
Acquisition — Estimation
(Microphones) (LabVIEW)
Video Motor
Acquisition < Steering
(IP Camera) (Stepper Motor)




Speech Acquisition Module

» Consists of four Channels

» Two channels are used to calculate the Azimuth, the other two for Elevation
» Simultaneous sampling at a rate of 51.2 KS/s

» Minimum excitation voltage of 18 VDC

Speech Acquisition
Microphone Array Module

¢

O O 0O




Stepper Motor Microstepping

» Ideal waveform to drive a stepper motor is a Sine wave
» Microstepping reduces the vibrations and improves accuracy

Microstepping Rate Least count

1 1.8

2 0.9

= 0.45

8 0.225
16 0.1125
32 0.05625
64 0.028125
128 0.0140625
256 0.00703125

Quarter Step 2
I N

Microstepping in Stepper Motors



Video Acquisition Module

» Consists of an IP Camera connected to the two motors
» Camera is instructed to take a picture every five seconds
» The data is stored in a USB flash drive connected to the cRIO controller

/Wjj

Position of Camera in the Steering Frame

® 2 Microphone

C=> Camera




Experimental Setup

The Steering Frame used to rotate the Camera Angular Chart for measuring actual DOA



Flow Diagram of the Intelligent Meeting Capture System

Host Computer Steering Frame

cRIO DOA
Controllerand Estimation
Chassis

<Video Acquisition

Motor Steering

< Speech Signals

s DC Power Supply

AC Power Supply

To Stepper Motor Drives and Controller




Speaker localization in Real Time and Speech Acquisition Waveform

Waveform Graph
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Demo Video : Intelligent Meeting Capture System




The Non Reference Anchor Array Framework for
Speech Enhancement and Recognition

» Speech recognition over microphone arrays is challenging under multi
source environments

» Generally a single primary microphone array (PMA) is used along with a
LCMV beamformer

» A non reference anchor array framework uses an additional Auxiliary micro-
phone array (AMA)

» Auxiliary microphone array is anchored such that it cancels noise in the
same direction as the SOI

» Both PMA and AMA use an Adaptive LCMV beamformer



The Non Reference Anchor Array Framework for

Speech Enhancement and Recognition

Beamforming
l Direction

Speech source
) .

Speech source

——» Adaptive weights

LC-MVDV

Beamforming

l Direction
b{k)

MNoise
———» Adaptive weights

+

x(k)=s(k)+b(k) "Z

-._I_.—'

LC-MVDR/
MNoise

» Difference of the output at two arrays is given by,
e(k) = s(k) + b(k) — b(k)

» When b(k) is a good approximation for b(k),

Desired signal, d(k) = s(k) + b(k) — b(k)

..\e(k)=x(k)-6(k)’



Determining Optimal Location of Non-Reference Anchor Array

» Auxiliary Microphone Array (AMA) placement plays crucial role in perfor-
mance.

» It should not be arbitrary.

» AMA should be placed such that it receives the same noise signal as the
Primary Microphone Array (PMA).

» AMA should be placed such that it receives least of the signal of interest.

» To obtain a good location for AMA correlation evaluation can be used.
» Let only noise source be present.

» Signal at PMA is denoted by O1 and signal at AMA is denoted by O2.
» For delay ‘n’ between the signals, correlation ‘C’ is evaluated as,

C =) O01*[m]O2[n + m)]

where N1 is the number of samples.

» Location at which C is maximum (DOA of Noise at PMA and AMA is same)
IS the optimal location.



Determining Optimal Location of Non-Reference Anchor Array
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Distance of nearest microphone in M2 from M1

Normalized Correlation between output O1 (output
of array recording signal) & O2 (output of array to
model noise). Position of M1 (PMA) is kept fixed

lllustration for the optimal placement of AMA.
While AMA1 and AMAS are a bad choice for

the placement of AMA, AMAZ2 represents a
better location for the placement of AMA. NS
is the noise source and SS is the signal source

and M2 (AMA) position is varied. Leftmost mic in
PMA was placed at (1,0,0). Noise source was
placed at (6.06,3.5,0). AMA position is varied
along the x-axis




Determining Optimal Location of Non-Reference Anchor Array
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Figure showing the projection of experimental
setup on x-y plane (not to scale). NS1, NS2, NS3
represent three noise sources and SS represent
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of array recording signal) & O2 (output of array to
model noise). Location of, array recording signal,

SOl source. Note that there is a misalignment in | . ol
is kept fixed. Leftmost mic in PMA was placed at

thepositions of PMA (Primary Microphone Array)
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Optimal Location of NRA for Cell Phone

i b 00000
AMA

Rear View of
Cellphone
Front View of
Cellphone

PMA

20000
\. S

lllustration of reference and non-reference anchor array using front & rear view. Both PMA (Primary
Microphone Array) & AMA (Auxiliary Microphone Array) are shown.

This method is able to minimize the effects of correlated interferences com-
ing from the direction of the signal of interest.



Performance Evaluation : Speech Enhancement and Recoghnition

» The performance of the proposed adaptive LCMV beamforming method in
a non-reference anchor (NRA) array framework is evaluated by conducting
large vocabulary speech recognition (speaker dependent) experiments on
the spatialized version of the TIMIT database.

» TIMIT database has been used for experiments.

» The TIMIT corpus of read speech is designed to provide speech data
for acoustic-phonetic studies and for the development and evaluation of
automatic speech recognition systems.

» MONC database has also been used for the experiments.
» Digit recognition experiments are also conducted on the MONC database

» The MONC is derived from the Numbers Corpus release 1.0, prepared by the
Center for Spoken Language Understanding at the Oregon Graduate Insti-
tute.



Performance Evaluation : Speech Enhancement

» Speech signal is taken for signal of interest and interfering signal.

» DOA of SOl at primary array is 40°.
» Interfering signal direction is taken as 40°,10° and 80°.
» SNR is 25 dB.

» 60 % of noise come from same direction of SOl and 20 % of noise comes
each from 10° and 80°.
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Performance Evaluation : Speech Enhancement and Recoghnition

» Signal source was located at radial distance of 0.6m from central mic in PMA
and subtends on it an angle of 40°.

» Noise source 1,2 and 3 were located at distance of 7m from central mic in
PMA and subtends on it an angle of 80°, 40° and 10° respectively.

» Performance is observed in terms % Word Error Rate, evaluated as,

(N—S—D-—1I)
10
N

WR = 100 0.

where N is the total number of words, S is the total number of substitutions,
D the total number of deletions and | is the total number of insertions in the
recognized word list.



Performance Evaluation : Speech Enhancement and Recoghnition

» Alignment Factor, A is defined as,

A Noise energy from DOA of SOI
f p—

Total noise energy
» Split factor, S, is defined as,
S+ = Number of noise sources with DOA different from DOA of SOL.
» Condition 1 : DOA of SOl is taken as 40 degrees. 90 % of the noise energy is

incident from direction of SOl whereas 10 % of the noise energy is incident
from DOA of 80°. Therefore, Condition 1 has Ay =0.9 and Sy = 1.



Performance Evaluation : Speech Enhancement and Recoghnition

Comparison of Word Error Rate (WER) on MONC Database (SNR is in dB) for A;=0.9 and S ;=1

(Condition 1)
Signal
Clean| SNR=25| SNR=20| SNR=15
CTM 2.89 |20.91 31.65 48.57
SM 4.69 |31.65 36.07 52.84
MV-NRA |3.53 |5.74 16.72 25.77
LCMV-NRA |3.53 |4.79 13.75 21.49
MV 3.53 |18.68 32.06 46.29
MUSIC |[18.22 35.03 55.81 68.33
GCC-PHAT | 21.28 | 44.59 6/.17 77.87
Comparison of Word Error Rate (WER) for the TIMIT Database (SNR is in dB) for A;=0.9 and S ;=1
(Condition 1)
Signal

Clean| SNR=25 SNR=20| SNR=15

CTM 26.58 | 37.87 51.55 67.24

SM 25.42 | 39.81 54.78 68.82

MV-NRA 23.19|28.73 35.42 40.16

LCMV-NRA 23.19 | 26.24 33.61 37.62

MV 23.19 | 36.06 50.94 65.86

MUSIC |35.65|50.19 66.85 83.86

GCC-PHAT 51.64 |57.84 64.26 84.82




Spherical Microphone Array Processing



Spherical Coordinate System

e Location of a source is given by r; = (r;, V), with W, = (6, ¢;).

e Location of a receiver is denoted as r; = (r;, ®;), where ®; = (6;, ¢;).

e The range (r), elevation (f) and azimuth (¢) takes values as r € (0, 00),
0 € [0, 7], ¢ €]0,27)

Z
t (r. 0. %)
| W
I &
.
| Y
¥ >

//\k
x 7 &



Principles of Acoustic Wave Propagation

Travellling plane wave at time t1

At time 12

Travelllng plane wave at ,l‘l‘f’ sensor

Travellling plane wave at reference

Traveling Plane Wave
ri = (risin@; cos ¢;, r; sin 0; sin ¢;, r; cos 9,-)T
k) = —(ksin 6 cos ¢, ksin b, sin ¢, k cos HI)T

|’7‘,'/| = IA(/.r,-/c — k/.r,-/w = k/TI‘,'/w



Principles of Acoustic Wave Propagation

Wave Equation in Cartesian Coordinate

e The infinitesimal variation of acoustic pressure from its equilibrium, p(r, t)
satisfies the following wave equation,

1 0%p

c? Ot?

where V? represents the Laplacian operator and c is the speed of sound
wave propagation in a particular medium.

V2p:

e [he Equation 4 can be written in Cartesian coordinate as

0% p | 0% p | 0% p 1 0% p
Ox2  Oy?2  9z2 20t

* Planewave solution of form p(t — 7) for far-field sources and spherical
wave solution of the form p(t — 7)/r for near-field will satisfy above Eqn.



Principles of Acoustic Wave Propagation

Solution to Wave Equation in Cartesian Coordinate

e Writing the acoustic pressure at a point r; due to a source at r;, we have

pi(r,t) = pi(t — k| ri/w).

e Monochromatic plane wave solution is (after taking FT)

Py(r, k) = e~ " Py(k)

e Spherical wave' has the form p(tlz':"sllj’)) with (V) = @

e Monochromatic spherical wave solution, can be written as

e—klf/—l’,‘|

Pi(r, k) = P;(k).

v — il

IR. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, 2013, vol. 1



Principles of Acoustic Wave Propagation

Solution to Wave Equation in Spherical Coordinate

e Wave equation in (4) can be written in spherical coordinates as

1 0, ,0p 1 o, . op 1 O0°p 1 0°p
)+ —— (sin(0)57) + ——— - = —
or rsin (0) 00 00 r2sin” () 0¢ c? Ot

e General solution to above Equation for standing wave type is

P(ra 67 Qb,td) — S: y: (Amnjn(kr) + anyn(kr)) Y,,m(é’, gb)

n=0 m=—n

and for traveling wave type is

P(r.0.6.0) = 32 (Coablkr) + Danhi(ke)) Y7'6.)

n=0 m=—n

e The general solution for exterior problems (sources inside the spherical
surface at r = a) is

®. @) n

P(r,0,¢,w)=> >  Cunhy(kr)Y;"(0, )

n=0 m=—n




Principles of Acoustic Wave Propagation

Solution to Wave Equation in Spherical Coordinate

e [he radiated pressure field is completely defined when the coefficients C,,,
are determined.

e The general solution for interior problems (sources are located outside a
sphere of radius r = b) is

P(r,0,6,w) = ) D Amia(kr)Y;(6,9)

n=0 m=—n

e [he temporal dependency is implicit in frequency dependence of the
co-efficients Ann, Bmn, Con and Doh.

e j.(kr) and y,(kr) are spherical Bessel functions, hy(kr) and h:(kr) are
spherical Hankel function of first and second kind respectively.



Principles of Acoustic Wave Propagation

Spherical Harmonics

e Angular dependence of the solution is described by spherical harmonics.

e Y, " represents spherical harmonic of order n and degree m given by

(2n +1)(n — m)!
4(n+ m)!

VO<n<N,—n<m<n

Y™ (0, ¢) = P™(cosf)e™? .

where P’ are the associated Legendre function.

e Spherical harmonics form a orthonormal basis set and any arbitrary
function on a sphere can be expanded in terms of them.

e Spherical harmonics plot : Yy, Y7, Y{




Principles of Acoustic Wave Propagation

Scattering from Rigid Sphere : Plane Wave

e The pressure field due to unit amplitude plane wave (interior problem) on
an open sphere (without scattering) can be written as

e =T N7 (Anja(kr)) Y (61, 6] YT (61, 67).

n=0 m=—n

e In presence of scattering (exterior problem) from a spherical surface of
radius ra, the resultant pressure field due to unit amplitude plane wave on
a rigid sphere can be written as

=3 S am(julhr) f,'/;',((irri))”"(’”)[‘”nm(@“¢'>]*Y"m("”¢")'

n=0 m=—n

e Combining above two equations, the plane wave solution over sphere is

e M =37 S bk, Y01 0] (61, 61)

n=0 m=—n

o by(k,r) is called far-field mode strength.



Principles of Acoustic Wave Propagation

Scattering from Rigid Sphere : Spherical Wave

e Unit amplitude spherical wave can be written in spherical coordinate
using Jacobi-Anger expansion as

e_.jklrl_rll

_y‘ S‘ ba(k, r, )Y (01,01)" Y. (i, i),

n=0 m=—n

ri —

e bn(k,r,n) is near-field mode strength. It is related to far-field mode
strength b,(k, r) as

bo(k,r,r) =~ ""Ykb,(k, r)h,(kr)
e Far-field mode strength b,(k, r) is given by

b.(k,r) = 4nj"j,(kr), open sphere

Jn(krs)
h, (krs)

= 47j" (jn(kr) hn(kr)), rigid sphere, radius r, < r



Principles of Acoustic Wave Propagation

Spherical Mode Strength

bn(kr) indB

40 . ——

n=0

n=3

n=4

\

P —

e S ——
NS
A

R

W

10 10
Kr

10

e b,decreasessignificantly for n > kr. The summation can be truncated

to some finite N > kr, called array order.



Principles of Acoustic Wave Propagation

Near-field
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Figure: Far-field and near-field mode strength for source at r = 1m.

e T[raditionally, transition between the near-field and far-field of sensor arrays
Is determined by the Fraunhofer or Fresnel distances.

e T[he near-field criteria for spherical array is based on similarity of near-field
mode strength (|b,(k, ra, r)|) and far-field mode strength (|bn(k, r2)|).

e [he two functions start behaving in similar way at kr; = N, for array of

order N. Hence, near-field condition for spherical array turns out to be
INE & % and r, < n < % 5].



Far Field Source Localisation and Beamforming in SH Domain

The Spherical Fourier Transform

Linear array : front-back ambiguity, planar array : up-down ambiguity.
Spherical arrays has no spatial ambiguity and can localize sources
anywhere in 3D space .

Let the signal received at (r, ®) = (r, 0, ¢) be denoted by
p(t,r,®) < P(k,r,®) with r > r, and k is wavenumber.

The spherical Fourier transform (SFT) or spherical harmonics
decomposition of the received signal is

Pom(k,r) = /QESQ P(k,r, ®)[Y()]*dQ

where Y, is spherical harmonics of order n and degree m,
d) = sinfdfd¢ is elemental area over sphere of unit radius, and (.)"
denotes complex conjugate of (.).

Substituting for d€2, the SFT can be expressed as

Pom (K, r):/OW/OW P(k, r,®)[Y,"(d)]* sin(6)dOdo.
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The Spherical Fourier Transform

e |In practice, the signal is sampled at the sensor locations. Hence, SFT of
pressure is approximated by a summation as

Pom(k, r) = Z aiPi(k, r,®)[Y." ()]

e For validity of above Eqn., orthogonality of spherical harmonics
must be maintained

/
S a VI (O (SN = Sunt G
=1

e One of the widely utilized sampling scheme is Gaussian Sampling where
the azimuth angle is sampled at 2(N + 1) equal-angle samples, and the
elevation angle is sampled at (N + 1) samples with nearly equally spaced.
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The Spherical Fourier Transform
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Figure: Gaussian sampling distribution for N = 7 and a total of 128 samples.

e |In matrix form for all g € [0, N], m € [—n, n] and [, the SFT becomes
mm(k, r) 2 Y7(®)FP(k, r, ®)

¢ Pum=[Pw Py_y Po Pu --- Pw] is(N+1)>x 1 matrix
e Y(®)is | x (N + 1)* matrix whose i*" row is given as
y(®i) = [Yo(®i) Yy (®) YI(®) Yi(d) ... Yy ()]

o I =diag(ai,an, -+ ,ay) is I x I matrix of sampling weights.
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Spatio- Temporal to Spherical Harmonics Data Model

e The total signal at received at the i*" sensor is

pi(V; 1) =) st —7i(V))) + vi(t)

[=1

e Computing the discrete Fourier transform (DFT) of above Equation,
the spatio-frequency data model can be written as

L
PV f,) =Y e 2™TWg (f,) + Vi(f,), v=1,--- ..

[=1

where the frequency f, is related to FFT index &, of DFT as

RS
V= TN

e Matrix form of the data model in spatio-frequency domain becomes

P(V; k) =A(WV; k)S(k) + V(k),
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Spatio- Temporal to Spherical Harmonics Data

e [he spatio-frequency data model is

A P(V; k) = A(V; k)S(k) -

A(\U, k) — :31,32, ¢ o o aal.:

a T a T
__ [~k —Jk
a=|e "7 e

Model

-V (k)

, Where

§9) —jlel'/]T
)

..., €

Ty . . L .
e e/ " s plane wave solution to the wave equation in Cartesian
co-ordinates which can be written for a rigid sphere in spherical

co-ordinate as [4]

ke_jk’T"' — Z Z bn(k,r)

n=0 m=—n

Y (W)Y, ()
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Spatio- Temporal to Spherical Harmonics Data Model

h

e Using expression for plane wave solution obtained in last Eqn., the steering
matrix can be finally simplified as

DAV k) = Y(®)B(k, )Y (W)

e Y(®)is | x (N + 1)* matrix whose i*" row is given as
y(®;) = [Yo (®:), Y7 (®:), YO (¥i), Yi(®i),..., YN (®:)].

e The L x (N 4 1)* matrix Y(W) can be expanded on similar lines.
e The (N +1)* x (N + 1)* matrix B(kr) is given by

B(k, r) = diag(bo(k,r), bi(k,r), bi(k,r), br(k,r), ..., bu(k,r))



Far Field Source Localisation and Beamforming in SH Domain

Advantage of Data Model Formulation in SH Domain

e [he steering matrix in spherical harmonics domain turns out to be
Ann(V) = Y7 (W), A particular steering vector can be written as

anm(V)) =y (W) = [YO (W), Y71 (W), YO (W), Y (W), ..., Yo (w))]”

e Data dimensionality reduced from / x Nsto (N + 1) x Nswith />
(N+1)°.

e Frequency independent nature of steering matrix allows frequency
smoothing to restore the rank of signal covariance matrix.

Roum (k) = E[Dam(k)Dam(k)"] = Y7 (W)Rs(K)Y (W) + Rz, (K)

e Ease of beamforming, due to reduced dimensionality of array covariance
matrix and simple structure of steering vector component.
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SH-MUSIC and SH-MGD

e Spherical harmonics MUSIC spectrum can now be written as

1
aan(w)Qnm Qananm(w)

Pst—music(W) =

where, aym = yH(\IJ/).
e The Spherical Harmonics MUSIC-Group delay (SH-MGD) spectrum is

computed as

Pst—mep (V) = (Z |V3fg(aan(W)qu)|2) Psti—music (V).

u=1
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SH-MUSIC and SH-MGD Spectrum *
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Figure: SH-MUSIC spectrum Figure: SH-MGD spectrum

e Two sources are taken at (20°,50%) and (15°,60°). Simulation is done

assuming open sphere at SNR 10dB.
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The Eigenmike setup in an anechoic chamber at |IT Kanpur for acquiring a far-field source
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Experiments on Far-field Source Localization in Noisy Environments

» Two sources at (30°, 35°) and (50°, 60°) are incident over fourth order Eigen-
mike system.

» The cumulative RMSE is defined as

1 T 2 A )
RMSE = % [(6: = 6")" + (& — $")’],

t=1 =1

where, t is trial number, 7' is the total trials and [ denotes the source number.

12
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(=] N + (22} (o]
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Experiments on Far-field Source Localization in Noisy Environments

» The probability of resolution is given by

N

1 2

P,
AT

4
t= l 1

where ¢ is confidence interval.

Probability of resolution at various SNRs for 200 iterations. Sources are taken at (30°, 35°) and

(50°, 60°).

[Pr(16, — 6" < ¢) + Pr(|¢y —

Methods

SNR
(5dB)

SNR
(10dB)

SNR
(15dB)

SNR
(20dB)

SH-MGD

0.9167

0.9971

3

3

SH-MUSIC

0.9444

0.9829

0.9987

1

SH-MVDR

0

0

0.4179

]

M < 0]
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Experiments on Far-field Source Localization in Reverberant Environments

» Proposed algorithm was tested for a room with dimensions, 7.3m X 6.2m X

3.4m.
» Two sources at v; = (30°,60°) and ¥, = (35°, 50°) were considered.

» Localization experiments were conducted for 300 iterations at three different
reverberation level.

Comparison of RMSE of various methods at different reverberation time, Tg.

Ts0 Tso Ts0
Angle Method | 1 55ms) | (200ms) | (250ms)
SH-MGD | 0.6403 | 0.6419 | 0.6475
9  [SH-MUSIC|0.6688 0.8144 |0.7989
SH-MVDR |1.1034 |1.1579 |1.1738
SH-MGD | 1.4387 | 1.4665 | 1.4866
6  [SH-MUSIC 1.7866 [1.9127 |1.6484
SH-MVDR [2.276 | 2.3481 |2.4927
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Experiment on Narrowband Source Tracking

» Elevation of a narrowband source is tracked at fixed azimuth of 45°. The
elevation is varied as in the below Figure.

Elevation(0)
Elevation(9)
3
I

S

20r

00 5 10 15 20 2

Time(sec)

Time(sec)

Elevation tracking using SH-MUSIC Elevation tracking using SH-MGD



Near Field Source Localisation and Beamforming

in Spherical Harmonic Domain
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e The position vector of i*" microphone is given as r; = (r,, ®;) where r, is

radius of the spherical array and ®; = (6;, ¢;).

/th

e The position vector of /™" source at r; = (r, V)
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Near Field Source Localisation and Beamforming in SH Domain

Data Model Formulation

o Utilizing < ljkl_r I|r/| Zn 0> ba(k, )Y, (V)T Y, (®;) and SFT,
the final near-field data model in SH domain can be written as

Pam(k) = [B(r)y"(W1) -+ B(r)y"(W0)] S(K) + Vam (k).
e Re-writing the data model in more compact way, we have

Pom(k) = Apm(r, V)S(k) + Vam(k)
where, Apm(r, V) = [B(rl)yH(Wl), R B("L)YH(WL)]

e A steering vector can be written as anm(r, V) = B(r)y" (V).
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Near-field MUSIC, MUSIC-GD, MVDR in SH Domain

e [he near-field spherical harmonics MUSIC spectrum can now be written as

1
arl;lm(ry w)Qanﬁmanm(r, \U)

Pst—music(r, V) =

where anm(r, V) = B(r)y" (V).
e [he Spherical Harmonics MUSIC-Group delay spectrum is computed as

U
Pst—mep(r, V) = (z |V arg(apm(r, W)CIu)|2> Pst—music
u=1

e The SH-MVDR spectrum for near-field source localization, is written as

1
akl,(r, VRS apm(r, V)

pnm

Psy—mvor(r, V) =



Near Field Source Localisation and Beamforming in SH Domain
Near-field Source Localization Result: SH-MUSIC, SH-MGD, SH-MVDR

Figure: The sources are at (0.06m,60°,30°) and (0.08m,55°,40°) with SNR 10dB.
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Experiments on Near-field Source Localization

» Two narrowband sources with location r; = (0.1,30°,45°) and r, = (0.8,
30°, 45°) with respective frequency as 220Hz and 250Hz, are taken.

» The DOA of the sources is assumed to be known, and range is estimated at
various SNRs.

» The ability of the proposed methods to radially discriminate aligned sources
IS analyzed herein.

» The cumulative RMSE is computed as

» The cumulative RMSE is computed as

1
RMSE = —

t—

» The probability of resolution for range is defined as

1 T 2
P - [Pr(|r, — 7P| < ¢)]
2T tz; l:?
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Experiments on Near-field Source Localization

Cumulative RMSE in range r, at various SNRs for 100 iterations. Sources are at (0.1m, 30°, 45°)

and (0.8m, 30°, 45°).

Methods SNR | SNR | SNR | SNR
(10dB) | (20dB) | (30dB) | (40dB)

SH-MGD | 0.0847 |0.07850.0389 (0.0217

SH-MUSIC | 0.495 [0.495 |0.2891 0.0049

SH-MVDR [0.495 [0.495 |0.495 |0.0562

EESH-MGD
: [ISH-MUSIC |
' EliSH-MVDR
0 20 30 40

10
SNR(dB)

Range estimation performance of SH-MGD, SH-MUSIC and SH-MVDR in terms of probability of
resolution.
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Near Field Source Localisation and Beamforming in SH Domain

Joint Range and Bearing Estimation

e [he experiments are performed for both simulated and actual signals
acquired from a spherical microphone array.

e A narrowband source with frequency 600Hz, is fixed at location
(0.3m, 90°,90°).
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Joint Range and Bearing Estimation :
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Figure: 4D scatter plots using, (a) SH-MUSIC for simulated signal, (b) SH-MGD for

simulated signal.
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Joint Range and Bearing Estimation : Real
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