Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

LiFi, Mirrors, and Wireless Communications

A. Chockalingam

Department of ECE Indian Institute of Science, Bangalore

> NCC'2017 Tutorial IIT Madras, Chennai 2 March 2017

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

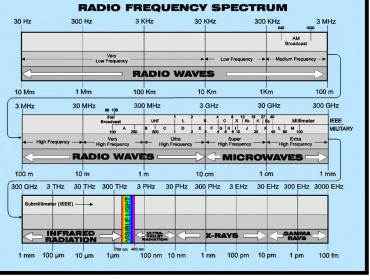
Sac

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Part 1: LIF1 (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks 1 Part I: LiFi (Visible Light Communication)


2 Part II: RF Mirrors (Media-Based Modulation)

Wireless spectrum

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Source: Internet

イロト イポト イヨト イヨト

Sac

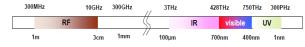
Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Part I LiFi (Visible Light Communication)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ


Optical wireless

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Optical wireless communication (OWC)
 - promising complementary technology for RF communication (RFC) technology
 - information conveyed via optical radiation in free space
 - wavelengths of interest
 - infrared to ultraviolet
 - includes visible light wavelengths (380 to 780 nm)

Source: www.ieee802.org/15

- Visible light communication (VLC)
 - communications using visible light spectrum
 - abundant VLC spectrum (~ 300 THz bandwidth)
 - multi-gigabit rates over short distances
 - LEDs as transmitters and photo diodes (PD) as receivers

VLC: Pros and Cons

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Pros

- low power, low cost devices (LEDs, PDs)
- no spectrum cost
- no RF radiation issues
- inherent security in closed-room applications
- simultaneous data transmission and lighting
 - VLC technology rides along with efficient white LED lighting technology
- MIMO and OFDM techniques
 - improve spectral efficiency and performance

• Cons

- channel itself!
 - ambient light/interference from other light sources
 - alignment between Tx and Rx
 - scattering and multipath dispersion (ISI)
- no/low mobility

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

LEDs and photo diodes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Part 1: LiFi (Visible Light Communication)

LEDs and photo diodes

- VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks • Efficient lighting using white LEDs

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent |amp: 15 |umens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent |amp: 15 |umens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent |amp: 15 |umens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)
- Max. luminous efficacy: 683 lumens/watt (occurs at 555 nm; green)

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent |amp: 15 |umens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)
- Max. luminous efficacy: 683 lumens/watt (occurs at 555 nm; green)
- Max. luminous efficacy for white LED (with phosphor mixing): 250 Im/W

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)
- Max. luminous efficacy: 683 lumens/watt (occurs at 555 nm; green)
- Max. luminous efficacy for white LED (with phosphor mixing): 250 Im/W
- Recent claims on white LEDs: 100 to 160 Im/W
 - examples commercial white LED spec: 90 lm/W, 120 lm/W

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

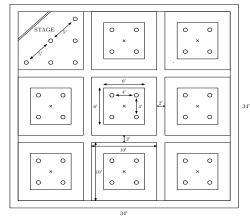
- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent lamp: 15 lumens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)
- Max. luminous efficacy: 683 lumens/watt (occurs at 555 nm; green)
- Max. luminous efficacy for white LED (with phosphor mixing): 250 Im/W
- Recent claims on white LEDs: 100 to 160 Im/W
 - examples commercial white LED spec: 90 lm/W, 120 lm/W
- Target for 2020: 200 |m/W

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

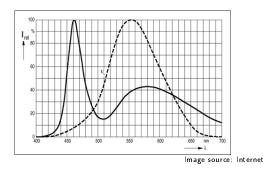
Part II: RF Mirrors (Media-Based Modulation)


- Efficient lighting using white LEDs
- Lumen: SI unit of luminous flux (luminous power)
 - measure of the quantity of visible light emitted by a source
 - example LED specs: 5 lumens, 90 lumens, 160 lumens
- Lumens/Watt: unit of luminous efficacy
 - Tungsten incandescent |amp: 15 |umens/watt (6 W for 90 lm)
 - Halogen lamp: 20 lumens/watt (4.5 W for 90 lm)
 - Mercury vapour lamp: 50 lumens/watt (1.8 W for 90 lm)
 - Fluorescent lamp: 60 lumens/watt (1.5 W for 90 lm)
 - LED lamp: 90 lumens/watt (1 W for 90 lm)
 - Sodium vapour lamp: 117-150 lumens/watt (0.77-0.6 W for 90 lm)
- Max. luminous efficacy: 683 lumens/watt (occurs at 555 nm; green)
- Max. luminous efficacy for white LED (with phosphor mixing): 250 Im/W
- Recent claims on white LEDs: 100 to 160 \mbox{Im}/\mbox{W}
 - examples commercial white LED spec: 90 lm/W, 120 lm/W
- Target for 2020: 200 |m/W
 - claimed to have been breached! 208 Im/W LED (prototype)

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

- VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks


• Lighting arrangement in Golden Jubilee Seminar Hall, ECE, IISc

- Off-stage
 - 32 bulbs (20 W bulbs previously; now replaced with 5 W LED bulbs)
- On-stage
 - 6 bulbs (60 W bulbs previously; now replaced with 18 W LED bulbs)

LEDs and photo d iod es

• Luminous flux through spectral integration

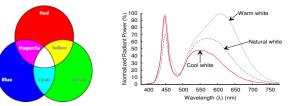
- Spectral power distribution of LED, $S_T(\lambda)$, (watts/nm) (solid curve)
- Spectral sensitivity of human eye (luminosity fn.), $V(\lambda)$ (dashed curve)
- Luminous flux, F_T (lumens):

 $F_{T} = 683(lumens/watt) \int_{300\,\mathrm{nm}}^{780\,\mathrm{nm}} S_{T}(\lambda) V(\lambda) d\lambda$

LEDs

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes


VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Color temperature:

• different shades of white

- 'yellowish white' (warm white): 2700° K
- 'bluish white' (cool white): 6000° K

Image source: Internet

A D > A D > A D > A D >

Э

590

Þ

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

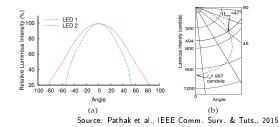
Concluding Remarks

Image source: Internet

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)


LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Luminous flux through spatial integration

- Luminous intensity, $g_t(\theta)$
 - Luminous flux per unit solid angle (in a specific direction)
 - Unit of LI: Candela (Lumens/Steradian); cd (lm/sr)
 - Most LEDs have Lambertian beam distribution
 - intensity drops as the cosine of the incident angle; $g_t(\theta) = \cos^n \theta$
 - Axial intensity, I_0 : LI in candelas at 0° solid angle
 - Half beam angle, θ_{max} : angle at which LI decreases to $I_0/2$

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Base) Modulation)

Concluding Remarks

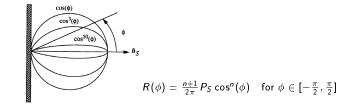
- Solid angle (in steradians) of a cone with apex angle θ (= $2\theta_{max}$ in degrees), $\Omega_{max} = 2\pi(1 \cos\frac{\theta^{\circ}}{2})$; i.e., cd = $|m/(2\pi(1 \cos\frac{\theta^{\circ}}{2}))$
- Luminous flux, F_T:

$$F_{T} = \int_{0}^{\Omega_{max}} I_{0}g_{t}(\theta)d\Omega = \int_{0}^{\theta_{max}} 2\pi I_{0}g_{t}(\theta)\sin\theta\,d\theta$$

- Example: Two LEDs with same luminous flux of 0.2 lumens
 - Left LED's solid angle: $15^{\circ} \implies LI = 3.7 \text{ cd}$
 - Right LED's solid angle: $30^{\circ} \implies LI = 0.9 \text{ cd}$
 - Left LED produces a smaller, brighter spot

Imagesource: Internet

LEDs


Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Generalized Lambertian radiation pattern of LED

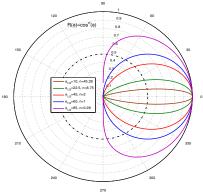
• *n* is the mode number of the radiating lobe given by

$$n=rac{-\ln(2)}{\ln\cos\Phi_{rac{1}{2}}}, \quad \Phi_{rac{1}{2}}$$
 is half-power semi-angle

- Mode number specifies the directionality of the source
 - larger the mode number, higher is the directionality
 - n = 1 corresponds to a traditional Lambertian source

LEDs

Part I: LiFi (Visible Light Communication)


LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

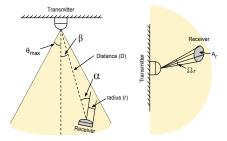
• Generalized Lambertian radiation pattern

Generalized Lambertian radiation pattern of LED

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Path loss

Part I: LiFi (Visible Light Communication)


LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Path loss
 - ratio of luminous flux at the Rx and Tx, $L_L = \frac{F_R}{F_T}$
 - need to specify the relative positions of the $\mathsf{T} \mathsf{x}$ and $\mathsf{R} \mathsf{x}$

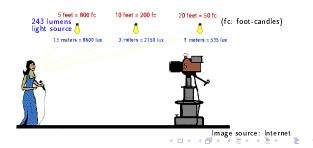
Source: Pathak et al., IEEE Comm. Surv. & Tuts., 2015

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

•
$$F_R = I_0 g_t(\beta) \Omega_r$$
; $A_r \cos \alpha = D^2 \Omega_r$
• $L_L = \frac{F_R}{F_T} = \frac{I_0 g_t(\beta) A_r \cos \alpha / D^2}{\int_0^{\theta \max} 2\pi I_0 g_t(\theta) \sin \theta d\theta} = \frac{(n+1)A_r}{2\pi D^2} \cos \alpha \cos^n \beta$

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes


VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

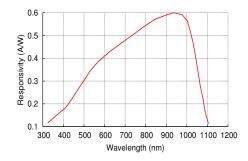
• Illuminance:

- measure of how much luminous power is incident on a given area
- SI unit of illuminance: Lux (lx)
- Lux: Lumens per square meter (Im/m^2)
- illuminance varies inversely with square of the distance from the source in free-space line of sight
 - Luminous flux (lumens) = Illuminance (lx) × 4πd² (d: distance from source in meters)

Photo diodes

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication)


LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Photo diode
 - Semiconductor (e.g., Si, Ge) device that converts light into current (may contain optical filters, built-in lenses)
 - Spectral response, $R(\lambda)$: (responsivity, Amperes/Watt)

• LOS optical received power $P_{R_o} = \int_{\lambda_{rL}}^{\lambda_{rH}} S_R(\lambda) R(\lambda) d\lambda$, where $S_R(\lambda) = L_L S_T(\lambda)$

Photo diodes

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Field of view (FOV): angle (e.g., 85°)
 - only the rays coming within FOV create response
 - accounting for FOV, L_L is

$$L_{L} = \frac{(n+1)A_{r}}{2\pi D^{2}} \cos \alpha \cos^{n}\beta \operatorname{rect}\left(\frac{\alpha}{FOV}\right)$$

- Response/rise time (t_r):
 - determined by resistance and capacitance of the photo diode and external circuitry (typ. tens of nsec)
 - determines f_{bw} , the bandwidth available for signal modulation (and hence for data transmission)
- Modulation signal bandwidth:
 - $f_{bw} = \frac{0.35}{t_r}$; e.g., $t_r = 50 \text{ ns} \Rightarrow f_{bw} = 7 \text{ MHz}$

Sac

LEDs

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Switching speed (rise/fall times):

- typ. tens of nsec
- decides modulation signal bandwidth
- switch LED for the following reasons:
 - to meet illumination constraints (dimming)
 - consider human eye's response characteristics
 - to achieve data communication
 - consider photo detector's response characteristics

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• to achieve both dimming control and communication simultaneously

Part I: LiFi (Visible Light Communication)

LEDs and photo diodes

- VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks

• Flicker

- Fluctuation of the brightness of light (as perceived by human eye)
- LEDs are switched for the purposes of
 - communication (using intensity modulation, e.g., OOK/PAM)
 dimming control (e.g., PWM)
- Human eye won't perceive flicker frequency > 200 Hz
- No perceived flicker as long as the signaling rate is > 200 Hz (i.e., one signaling interval < 5 ms)
- $\bullet\,$ Communication signaling rates are often much higher than 200 Hz
- So VLC using intensity modulation is not a major source of flicker

(Visible Light Communication) LEDs and photo diodes **VLC characteristics** MIM 0 and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

VLC characteristics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

RFC vs VLC

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• RF communication


- Transmitter
 - Tx RF chain (up converter, power amplifier), Tx antenna
- Receiver
 - Rx antenna, Rx RF chain (low noise amplifier, down converter)
- VLC
 - Transmitter
 - LED
 - Tx data by intensity modulating (IM) the LED
 - Receiver
 - Photo detector
 - Rx data by direct detection (DD)
 - LEDs/PDs with fast switching times
 - rise and fall times typ. tens of nsec

IM/DD channel

• VLC Tx-Rx

VIC

characteristics

• IM/DD channel

- Modeled using Poisson processes to account for the quantum nature of light
 - channel output (i.e., the detected number of photons) is a
 - r. v. which has a Poisson distribution with parameter λ
 - λ corresponds to the expected received intensity level
- Signal independent noise
 - originates from background radiation from other light sources (day/ambient light, fluorescent lamps, etc.) and
 - electronics in the receiver (thermal noise)
- Signal dependent noise
 - high-brightness LEDs where the randomness in the signal itself can not be neglected

VLC Tx-Rx

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

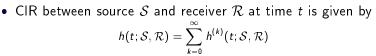
• VLC Tx-Rx

- Baseband communication (no passband involved)
- Signaling: positive, real-valued tx. signals

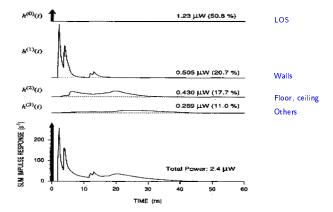
D.C.O'Brien et al, "Visible light communications: challenges and possibilities," IEEE PIMRC'2008.

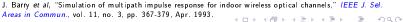
A D > A D > A D > A D >

э


Sac

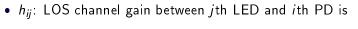
VLC channel


(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

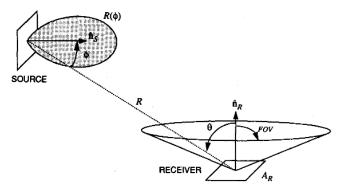

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

 $h^{(k)}(t)$ response of light undergoing exactly k reflections



VLC channel


(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

$$h_{ij} = \frac{n+1}{2\pi} \cos^n \phi \, \cos \theta \frac{A}{R^2} \operatorname{rect}\left(\frac{\theta}{FOV}\right)$$

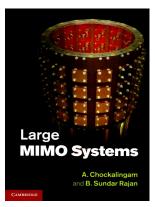
Geometry of LED source and photo detector

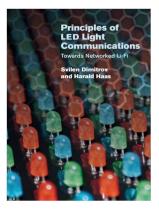
Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

MIMO in VLC


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで


MIMO RFC and MIMO VLC

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Base Modulation)

Concluding Remarks

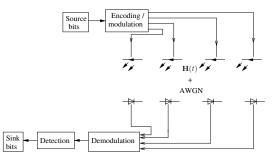
(日)、

Sac

MIMO in VLC

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э


Sac

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

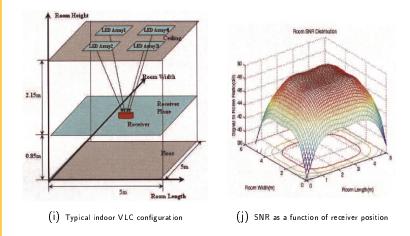
- Multiple LEDs and PDs
- N_t : no. of LEDs at Tx; N_r : no. of PDs at Rx

 4×4 MIMO VLC

- Advantages
 - high data rates (N_t symbols per channel use)
 - gives MIMO gains even under LOS conditions
 - induced power imbalance at Tx LEDs helps

A typical indoor VLC configuration

A D > A D > A D > A D >


3

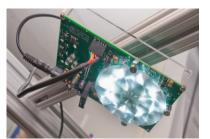
Sac

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Base) Modulation)

Concluding Remarks

D.C.O'Brien et al, "Visible light communications: challenges and possibilities", IEEE PIMRC'2008.


MIMO LED arrays

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• 8×8 MIMO VLC system

MIMO LED arrays

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• 48-LED array

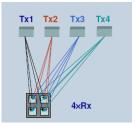
Source: Internet

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

VLC channel

3.5 3

Sac


Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- *N_t* LEDs (transmitter)
- N_r photo detectors (receiver)
- **H** denotes the $N_r imes N_t$ VLC MIMO channel matrix

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \cdots & h_{1N_t} \\ h_{21} & h_{22} & h_{23} & \cdots & h_{2N_t} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{N_r1} & h_{N_r2} & h_{N_r3} & \cdots & h_{N_rN_t} \end{bmatrix}$$

MIMO channel between LEDs and PDs

Example VLC channel matrices

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Channel matrix for $d_{tx} = 1$ m
 - Channel gain: High
 - Channel correlation: High

 $\mathbf{H}_{d_{tx}=1m} = \begin{bmatrix} 0.5600 & 0.5393 & 0.5196 & 0.5393 \\ 0.5393 & 0.5600 & 0.5393 & 0.5196 \\ 0.5196 & 0.5393 & 0.5600 & 0.5393 \\ 0.5393 & 0.5196 & 0.5393 & 0.5600 \end{bmatrix} \times 10^{-5}$

- Channel matrix for $d_{tx} = 4m$
 - Channel gain: Low
 - Channel correlation: Low

$$\mathbf{H}_{d_{tx}=4m} = \begin{bmatrix} 0.9947 & 0.9337 & 0.8782 & 0.9337 \\ 0.9337 & 0.9947 & 0.9337 & 0.8782 \\ 0.8782 & 0.9337 & 0.9947 & 0.9337 \\ 0.9337 & 0.8782 & 0.9337 & 0.9947 \end{bmatrix} \times 10^{-6}$$

Modulation schemes for VLC

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Transmit signals in VLC must be
 - positive real-valued for intensity modulation of LEDs
- Approaches
 - 00K
 - *M*-PAM with positive signal points
 - *M*-QAM/*M*-PSK with Hermitian symmetry
 - SSK and spatial modulation using multiple LEDs
 - QCM, DCM (Quad-/Dual-LED complex modulation)

T. Fath and H. Haas, "Performance comparison of MIMO techniques for optical wireless communications in indoor environments," *IEEE Trans. Commun.*, vol. 61, no. 2, pp. 733-742, Feb. 2013.

S. P. Alaka, T. Lakshmi Narasimhan, and A. Chockalingam, "Generalized spatial modulation in indoor wireless visible light communication," *IEEE GLOBECOM* 2015, San Diego, USA, Dec. 2015.

R. Tejaswi, T. Lakshmi Narasimhan, A. Chockalingam, "Quad-LED complex modulation (QCM) for visible light wireless communications" IEEE WCNC'16 Workshop on Opt. Wireless Commun., Apr. 2016.

MIMO VLC schemes

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Spatial multiplexing (SMP)

- N_t LEDs and N_r PDs
- At any given time, all LEDs are ON
- $\eta_{smp} = N_t \log_2 M$ bpcu
- Spatial modulation (SM)
 - At any given time, any one LED is ON
 - Other $N_t 1$ LEDs are OFF
 - $\eta_{sm} = \lfloor \log_2 N_t \rfloor + \log_2 M$ bpcu
- Space shift keying (SSK)
 - Special case of SM
 - Only index of active LED conveys information
 - $\eta_{ssk} = \lfloor \log_2 N_t \rfloor$ bpcu

MIMO VLC schemes

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Generalized space shift keying (GSSK)

- Generalization of SSK
- $N_a \leq N_t$ active LEDs
- $\eta_{gssk} = \lfloor \log_2 {N_t \choose N_a} \rfloor$ bpcu
- Generalized spatial modulation (GSM)
 - Generalization of SM
 - $N_a \leq N_t$ active LEDs
 - $\eta_{gsm} = \lfloor \log_2 {N_t \choose N_a} \rfloor + N_a \lfloor \log_2 M \rfloor$ bpcu

T. Fath and H. Haas, "Performance comparison of MIMO techniques for optical wireless communications in indoor environments," *IEEE Trans. Commun.*, vol. 61, no. 2, pp. 733-742, Feb. 2013.

S. P. Alaka, T. Lakshmi Narasimhan, and A. Chockalingam, "Generalized spatial modulation in indoor wireless visible light communication," *IEEE GLOBECOM* 2015, San Diego, USA, Dec. 2015.

MIMO VLC system model

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concludin_ឪ Remarks

- Each active LED emits an *M*-ary intensity modulation symbol $I_m \in \mathbb{M}$
 - \mathbb{M} : set of all possible intensity levels given by

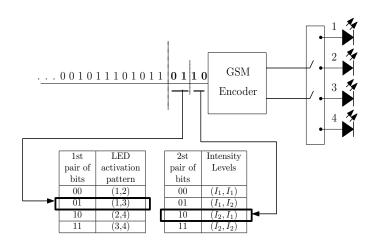
$$I_m = \frac{2I_p m}{M+1}, \quad m = 1, 2, \cdots, M, \quad M = |\mathbb{M}|$$

- **x**: $N_t \times 1$ transmit signal vector; $x_i \in {\mathbb{M} \cup 0}$
- **n**: $N_r \times 1$ noise vector at the receiver; $n_i \sim \mathcal{N}(0, \sigma^2)$
- **n**: $N_r imes 1$ received signal vector at the receiver

 $\mathbf{y} = a\mathbf{H}\mathbf{x} + \mathbf{n}$

- a: responsivity of the PD (Amp/Watt)
- Average received SNR

$$\overline{\gamma} = \frac{a^2 P_r^2}{\sigma^2}, \quad P_r^2 = \frac{1}{N_r} \sum_{i=1}^{N_r} \mathbb{E}[|\mathbf{h}_i \mathbf{x}|^2]$$


 \mathbf{h}_i : *i*th row of **H**

GSM-MIMO in VLC

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

GSM-MIMO transmitter for VLC system with $N_t = 4$, $N_a = 2$, M = 2

Visible Light Communicaion) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF Mirrors

Concluding Remarks

GSM for VLC system

Yart I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• Intensity levels are
$$l_1 = \frac{2}{3}$$
 and $l_2 = \frac{4}{3}$

- We need only 4 activation patterns out of $\binom{N_t}{N_a} = \binom{4}{2} = 6$ possible activation patterns
- So the GSM signal set for this example can be chosen as follows:

$$\mathbb{S}_{N_{t},M}^{N_{a}} = \mathbb{S}_{4,2}^{2} = \left\{ \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ \frac{2}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ \frac{2}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ \frac{3}{3} \\ 0 \\ \frac{2}{3} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2}{3} \\ 0 \\ \frac{4}{3} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ 0 \\ \frac{2}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ 0 \\ \frac{4}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{4}{3} \\ 0 \\ \frac{4}{3} \\ 0 \\ \frac{2}{3} \\ 0 \\ \frac{4}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{2}{3} \\ \frac{4}{3} \\$$

Upper bound on BER

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RE

Part II: RF Mirrors (Media-Base) Modulation)

Concluding Remarks Maximum likelihood (ML) detection rule is

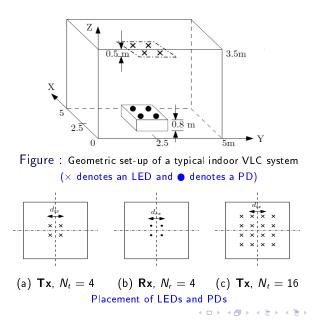
$$\hat{\mathbf{x}} = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{S}_{N_{t,M}}^{N_{a}}} \left(\frac{a}{\sigma} \| \mathbf{H} \mathbf{x} \|^{2} - 2 \mathbf{y}^{T} \mathbf{H} \mathbf{x} \right)$$

Pairwise error probability (PEP) is

$$PEP_{gsm} = Q\left(\frac{a}{2\sigma} \|\mathbf{H}(\mathbf{x}_2 - \mathbf{x}_1)\|\right)$$

Define $L \triangleq |\mathbb{S}_{N_t,M}^{N_a}|$. An upper bound on the BER for ML detection can be obtained using union bound as

$$BER_{gsm} \leq \frac{1}{L} \sum_{i=1}^{L} \sum_{j=1, i \neq j}^{L-1} PEP(\mathbf{x}_i \to \mathbf{x}_j | \mathbf{H}) \frac{d_H(\mathbf{x}_i, \mathbf{x}_j)}{\eta_{gsm}}$$
$$= \frac{1}{L} \sum_{i=1}^{L} \sum_{j=1, i \neq j}^{L-1} Q\left(\frac{r}{2\sigma} \| \mathbf{H}(\mathbf{x}_j - \mathbf{x}_i) \|\right) \frac{d_H(\mathbf{x}_i, \mathbf{x}_j)}{\eta_{gsm}}$$


where $d_H(\mathbf{x}_i, \mathbf{x}_j)$ is the Hamming distance between the bit mappings corresponding to the signal vectors \mathbf{x}_i and \mathbf{x}_j

Indoor VLC - A typical geometric set-up

Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Mirrors (Media-Based Modulation)

Concluding Remarks

JAC.

Э

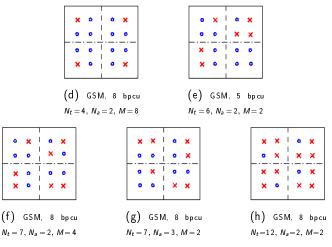
System parameters

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VUC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Base Modulation)

Concluding Remarks

	Length (X)	5m							
Room	Width (Y)	5m							
	Height (Z)	3.5m							
	Height from the floor	3m							
	Elevation	-90°							
Transmitter	Azimuth	0°							
	Φ _{1/2}	60°							
	Mode number, <i>n</i>	1							
	d _{tx}	0.6m							
	Height from the floor	0.8m							
	Elevation	90°							
Receiver	Azimuth	0°							
	Responsivity, a	0.75 Amp/Watt							
	FOV	85°							
	d _{rx}	0.1m							


▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

GSM performance

- Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)

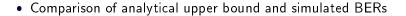
Concluding Remarks

- LED placements in a 4×4 square grid
- Different GSM configurations for $\eta = 8$ bpcu, 5 bpcu

 \times indicates the presence of an LED. \circ indicates the absence of LED.

イロト イボト イヨト イヨト

DQC


- 3

GSM performance

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

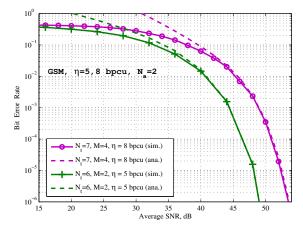
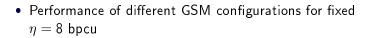


Figure : GSM with $N_t = 6, 7, N_a = 2, M = 2, 4, \eta_{gsm} = 5, 8$ bpcu.

◆ロト ◆掃 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 … の へ ()・

GSM performance

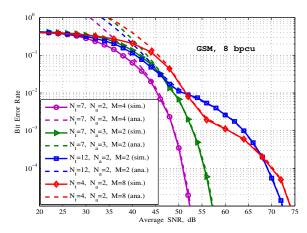

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

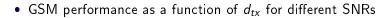
Sac

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks




Figure : Comparison of the BER performance of different configurations of GSM with $\eta_{gsm} = 8$ bpcu, $N_r = 4$.

GSM performance for varying d_{tx}

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

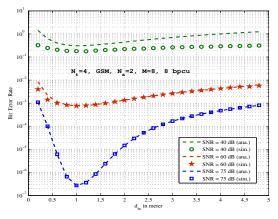


Figure : GSM with $N_t = 4$, $N_a = 2$, M = 8, $\eta_{gsm} = 8$ bpcu.

• Opposing effects of channel correlation and channel chains for increasing d_{tx} results in optimum d_{tx}

Sac

GSM vs other MIMO techniques

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concludin_é Remarks

- SMP, GSSK, SM, and GSM with $\eta=8~bpcu$
- SMP:

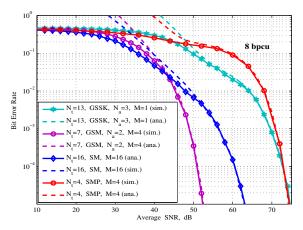
•
$$N_t = 4, N_a = 4, M = 4$$

SSK:
•
$$N_t = 13, N_a = 3, M = 1$$

• SM:
•
$$N_t = 16, N_a = 1, M = 16$$

×	× 1	×	×
×	×	×	×
×	×	×	×
×	×	×	×

GSM:
N_t = 7, N₂ = 2, M = 4


٥	×	1 0	×
•	•	¦ ×	۰
×		÷	•
	•	×	
< □		1	

GSM vs other MIMO techniques

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks • Comparison of the BER performance of SMP, GSSK, SM, and GSM for the same $\eta = 8 \ bpcu$, $N_r = 4$

• For the same $\eta = 8$ bpcu, GSM performs better (by about 9 dB at 10^{-5} BER) compared to SMP, SSK, GSSK, SM

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

OFDM in VLC

▲ロト ▲圖ト ▲屋ト ▲屋ト

€ 990

OFDM in VLC

200

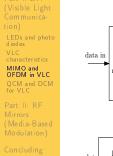
Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• OFDM

- Popular in wired and wireless RF communications
- Attractive in VLC as well
- OFDM in RF communications
 - OFDM signals are in the complex domain
 - Signals can be bipolar
- OFDM in VLC
 - VLC transmit signal must be real and positive
 - Use Hermitian symmetry on information symbols before IFFT to obtain real signals
 - Perform bipolar or unipolar conversion
 - Achieves good performance (3 Gbps single-LED OFDM link has been reported)


J. Armstrong, "OFDM for optical communications," *J. Lightwave Tech.*, vol. 27, no. 3, pp. 89-204, Feb. 2009.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," *Proc. IEEE VTC 2007-Spring*, pp. 2185-2189, Apr. 2007.

D. Tsonev et al, "A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μ LED," IEEE Photonics Tech. Lett., vol. 26, no. 7, pp. 637-640, Jan. 2014

OFDM in VLC

Sac

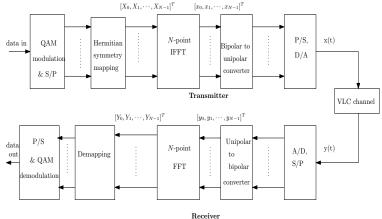


Figure : A general single-LED OFDM system model in VLC.

OFDM in VLC

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

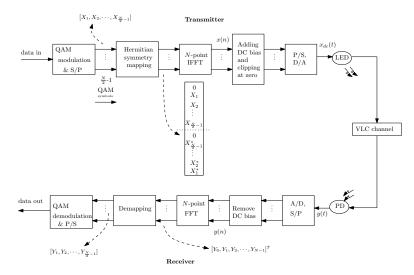
Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks • Techniques to generate VLC compatible OFDM signals in the positive real domain:

- DCO OFDM (DC-biased optical OFDM)
- ACO OFDM (Asymmetrically clipped optical OFDM)
- Flip OFDM
- NDC OFDM (Non-DC-biased OFDM)
- CI-NDC OFDM (Coded Index NDC OFDM)

O. Gonzlez et al, "OFDM over indoor wireless optical channel," Proc. IEE Optoelectronics, vol. 152, no. 4, pp. 199-204, Aug. 2005.

J. Armstrong and B. J. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," *IEEE Commun. Letters*, vol. 12, no. 5, pp. 343-345, May 2008.


N. Fernando, Y. Hong, and E. Viterbo, "Flip-OFDM for unipolar communication systems," *IEEE Trans. Commun.*, vol. 60, no. 12, pp. 3726-3733, Aug. 2012.

Y. Li, D. Tsonev, and H. Haas, "Non-DC-biased OFDM with optical spatial modulation," IEEE PIMRC 2013, pp. 486-490, Sep. 2013.

DCO OFDM

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

O. Gonzlez et al, "OFDM over indoor wireless optical channel," Proc. IEE Optoelectronics, vol. 152, no. 4, pp. 199-204, Aug. 2005.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

5900

DCO OFDM

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

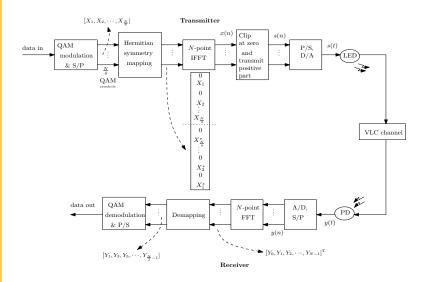
Concluding Remarks

- $\frac{N}{2} 1$ QAM symbols are modulated per OFDM symbol
- The unipolar OFDM signal $x_{dc}(t)$ is given by

 $x_{dc}(t) = x(t) + B_{dc}$

where x(t) is the bipolar OFDM signal

- B_{dc} = k√E{x²(t)}; define this as a bias of 10 log₁₀(k² + 1) dB
- The achieved rate in DCO OFDM is given by


$$\eta_{dco} = \frac{N - 1}{N} \log_2 M$$

 $\approx \frac{1}{2} \log_2 M$ bpcu, for large N

ACO OFDM

Sac

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF Mirrors (Media-Based

Concluding Remarks

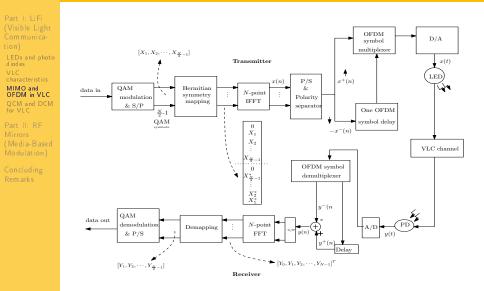
J. Armstrong and B. J. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," *IEEE Commun. Letters*, vol. 12, no. 5, pp. 343-345, May 2008.

ACO OFDM

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)


- $\frac{N}{4}$ QAM symbols are modulated per OFDM symbol
- Only odd subcarriers are used to send information
- All even subcarriers are set to zero
- The unipolar OFDM signal is obtained by clipping the negative signals at zero
- The achieved data rate in ACO OFDM is given by

$$\eta_{aco} = rac{1}{4} \log_2 M$$
 bpcu

Flip OFDM

Э

Sac

N. Fernando, Y. Hong, and E. Viterbo, "Flip-OFDM for unipolar communication systems," IEEE Trans. Commun., vol. 60, no. 12, pp. 3726-3733, Aug. 2012. Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- $\frac{N}{2} 1$ QAM symbols are modulated per OFDM symbol
- The unipolar OFDM signal is obtained by flipping the negative signals
- Two OFDM time slots are used to send one OFDM symbol
- Positive parts are sent on the first slot
- Flipped negative parts are sent on the second slot
- The achieved data rate in flip OFDM is given by

$$\eta_{flip} = rac{N}{2} - rac{1}{2N} \log_2 M$$
 $pprox rac{1}{4} \log_2 M$ bpcu, for large N

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

DCO, ACO, flip OFDM performance

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

-

Sac

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF

Mirrors (Media-Base Modulation)

Concluding Remarks

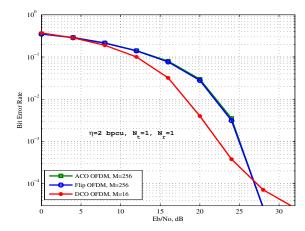


Figure : Comparison of the BER performance of ACO OFDM, flip OFDM, and DCO OFDM with 7dB bias for $\eta = 2$ bpcu, $N_t = N_r = 1$.

DCO OFDM performance for varying DC bias

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

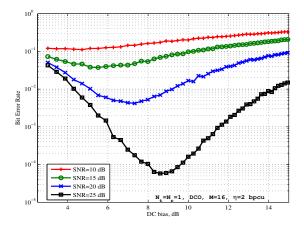
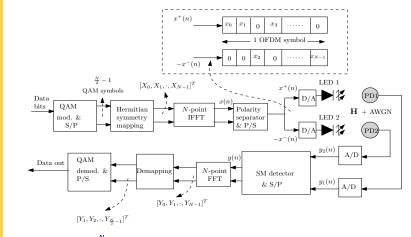



Figure : BER performance of DCO OFDM as a function of DC bias with $\eta = 2$ bpcu, M = 16, and $N_t = N_r = 1$, for SNR = 10, 15, 20, 25 dB.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

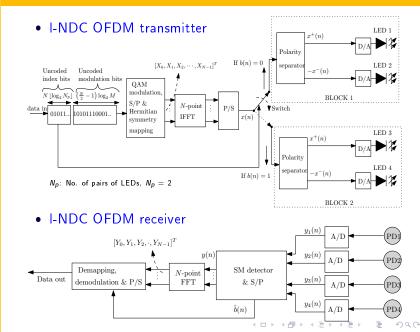
NDC OFDM

MIMO and OFDM in VLC

• $\eta_{\text{ndc}} = \frac{\frac{N}{2} - 1}{N} \log_2 M \approx \frac{1}{2} \log_2 M$ bpcu, for large N

Y. Li, D. Tsonev, and H. Haas, "Non-DC-biased OFDM with optical spatial modulation," IEEE PIMRC 2013, pp. 486-490, Sep. 2013.

A D > A D > A D > A D >


э

Sac

Indexed-NDC OFDM

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF Mirrors

(Media-Based Modulation)

NDC OFDM and I-NDC OFDM performance

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RF Mirrors (Media-Based

Concluding Remarks

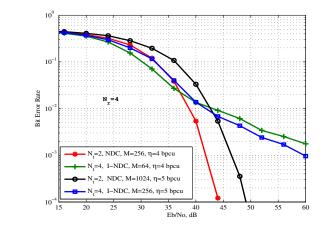


Figure : BER performance of I-NDC OFDM and NDC OFDM for $\eta = 4$, 5 bpcu, $N_r = 4$

・ 日 > ・ 一 戸 > ・ 日 > ・

Э

Sac

NDC OFDM and I-NDC OFDM performance

Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC Part II: RE

Mirrors (Media-Based Modulation)

Concluding Remarks

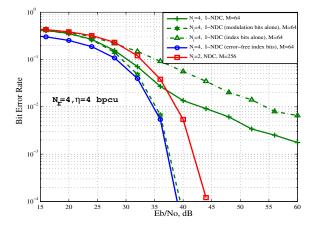
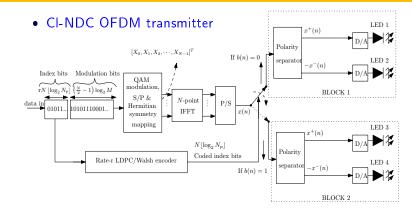
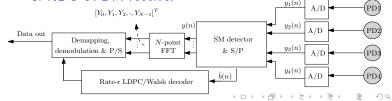


Figure : Reliability of modulation bits and index bits in I-NDC OFDM for $\eta = 4$ bpcu, $N_r = 4$

Sac


- Reliability of index bits is poor!
- Use coding for index bits

Coded I-NDC OFDM


Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• CI-NDC OFDM receiver

CI-NDC OFDM performance

A D > A D > A D > A D >

Sac

Concluding Remarks

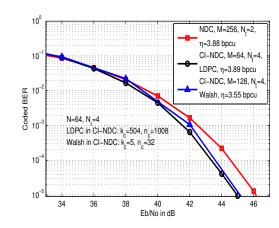


Figure : BER performance of CI-NDC OFDM and NDC OFDM at $\eta = 3.8$ bpcu, $N_r = 4$

• CI-NDC OFDM performs better than NDC OFDM

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Quad-LED & dual-LED complex modulation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Quad-LED complex modulation (QCM)

Part 1: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- A complex modulation scheme for VLC
- Uses 4 LEDs (hence the name 'quad')
- Does not need Hermitian symmetry
- QCM signaling
 - LEDs are simultaneously intensity modulated by the magnitudes of the real and imaginary parts of a complex symbol
 - Sign information is conveyed through spatial indexing of additional LEDs

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• QCM module can serve as a basic building block to bring in the benefits of complex modulation to VLC

R. Tejaswi, T. Lakshmi Narasimhan, A. Chockalingam, "Quad-LED complex modulation (QCM) for visible light wireless communications" IEEE WCNC'16 Workshop on Optical Wireless Commun., Apr. 2016.

QCM for VLC

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks • Mapping of complex symbol $s = s_l + js_Q$ to LEDs activity in QCM

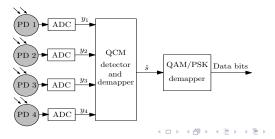
Real part	Status of LEDs	Imag. part	Status of LEDs
SI		s _Q	
≥ 0	LED1 emits s1	≥ 0	LED3 emits s _Q
	LED2 is OFF		LED4 is OFF
< 0	LED1 is OFF	< 0	LED3 is OFF
	LED2 emits s ₁		LED4 emits s _Q

• Example:

- If s = -3 + j1, then LED1: OFF; LED2: emits 3; LED3: emits 1; LED4: OFF Corresponding QCM tx. vector is x = [0 3 1 0]^T
- Note:
 - Two LEDs (one among LED1 and LED2, and another one among LED3 and LED4) will be ON simultaneously. Other two LEDs will be OFF

QCM for VLC

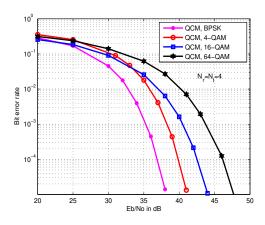
Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC


Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

• QCM transmitter

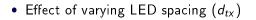
• QCM receiver

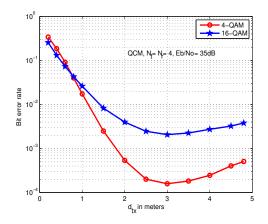

Sac

Þ

QCM performance

Part II: RF Mirrors (Media-Based Modulation)


- Crossover between performance of 4-QAM and 16-QAM
 - due to multiuser detection effect strong interferer helps


QCM performance

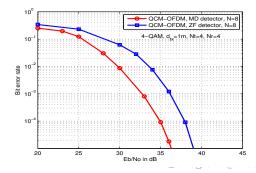
Sac

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- optimum LED spacing
 - due to opposing effects of weak channel gain and weak channel correlation for increasing d_{tx}

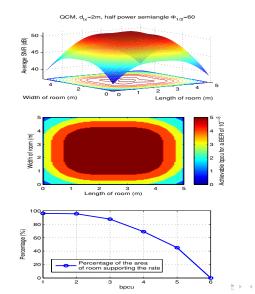
QCM-OFDM


Sac

ŀ

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)


- OFDM signaling along with QCM (QCM-OFDM)
 - N complex symbols drive N-point IFFT
 - IFFT output vector (OFDM symbol) drives QCM transmitter block in *N* channel uses
 - QCM-OFDM signal detection
 - Zero-forcing (ZF), minimum distance (MD) detectors
 - Performance of QCM-OFDM

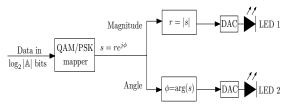
Achievable rate contours in QCM

Sac

- Spatial distribution of received SNR
- Achievable rate (in bpcu) for a given target BER (e.g., 10⁻⁵ BER)
- Percentage area of the room covered vs achieved rate

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)


Dual-LED complex modulation (DCM)

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

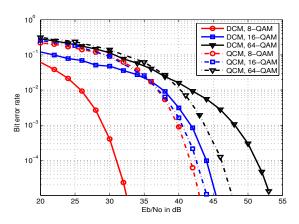
Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Exploit representation of complex symbols in polar coordinates
- Adequate to convey only the magnitude and phase of a complex symbol s = re^{jφ}, r ∈ ℝ⁺, φ ∈ [0, 2π)
 - only two LEDs suffice
 - no sign information to convey
- The 2 × 1 DCM tx. vector is $\mathbf{x} = [r \ \phi]^T$
- DCM transmitter:

T. Lakshmi Narasimhan, R. Tejaswi, and A. Chockalingam, "Quad-LED and Dual-LED complex modulation for visible light communications" arXiv:1510.08805v2 [cs.IT] 2 May 2016.

Sar

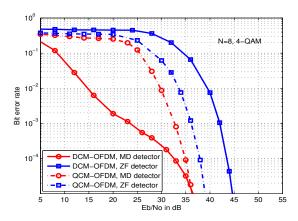

Performance of QCM and DCM

イロト イポト イヨト イヨト

Sac

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)


- For small sized QAM (8-QAM), DCM performs better than QCM
- For larger sized QAM (16-QAM, 64-QAM), QCM performs better

Performance of QCM-OFDM and DCM-OFDM

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ つくぐ

Achievable rate contours in DCM

Sac

ŀ

1

DCM, d_{tv}=2m, half power semiangle $\Phi_{1/2}$ =60 50 Average SNR (dB) 45 40 35 0 3 2 0 0 Width of room (m) Length of room (m) 4 Achievable bpou for a BER of Width of room (m) з 2 2 0 2 з 5 í٥ 1 4 Length of room (m) 100 80 Percentage (%) 60 40 20 Percentage of the area of room supporting the rate з 4 bpcu

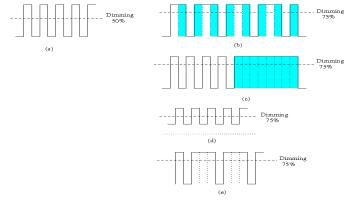
Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

VLC with dimming support

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC


Part II: RF Mirrors (Media-Based Modulation)

- Human eye perceives the average intensity (when intensity changes faster than 200 Hz)
- Need dimming support in lighting applications
 - dimming target (e.g., 75%, 50%, 25%)
- Two approaches
 - time-domain (TD) approach
 - adds compensation symbols of two levels (ON/OFF) within a max. flickering time period (MFTP) to match dimming target
 - Adv: easy to implement; Disadv: rate loss
 - intensity-domain (ID) approach
 - changes the intensity levels; also includes bias scaling (alters DC bias level), intensity distribution adaptation
 - Adv: high rate; suited for multi-level modulation like PAM
 - an optimization problem formulation
 - maximize rate w.r.t intensity level distribution

VLC with dimming support

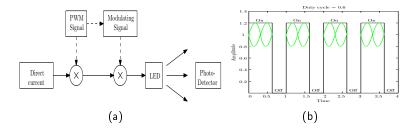
- Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks

- Examples of dimming support
 - TD approach: (b) intra-pulse insertion; (c) inter-pulse padding (IEEE 802.15.7 OOK mode uses this)
 - ID approach: (d) bias-scaling; (e) distribution adaptation

S. H. Lee, S-Y. Jung, and J. K. Kwon, Modulation and coding for dimmable visible light communication, IEEE Commun. Mag., pp. 136-142, Feb. 2015.

VLC with dimming support

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト


э

San

Part 1: LIF1 (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks • Data modulation (e.g., using OFDM) with dimming control (e.g., using PWM)

Z. Wang, W-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, Performance of dimming control scheme in visible light communication system, Optics Express, vol. 20, no. 17, pp. 18861-18868 (2012).

T. D. C. Little and H. Elgala, Adaptation of OFDM under visible light communications and illumination constraints, Asilomar Conf. Signals, Systems, and Computers, pp. 1739-1744, 2014.

Outdoor VLC

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Vehicular communication (intelligent transportation systems)
 - a challenging and challenging outdoor VLC application
 - vehicle-to-vehicle (V2V), infrastructure-to-vehicle (I2V), vehicle-to-infrastructure (V2I)
 - Outdoor VLC elements: traffic lights, street lights, head/tail lights, etc.
- Motivation: road-safety; reduce road accidents
- Typical requirements
 - Indoor applications:
 - High data rates (Mbps-Gbps)
 - Short range (1-2 m)
 - Vehicle (outdoor) applications:
 - Relatively low data rates (Kbps)
 - Longer range (80-100 m)
 - Robustness to numerous sources of parasitic light (vehicular VLC channel is extremely noisy)

A-M. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, "A survey on the usage of DSRC and VLC in communication-based vehicle safety applications," Proc. IEEE Symp. on Commun. and Veh. Tech. (SCVT), pp. 69-74, Nov. 2014.

Outdoor VLC

Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- IEEE 802.11p (DSRC: Dedicated Short Range Communication)
 - standard for RF wireless access in vehicular environments
 - based on IEEE 802.11a
 - 75 MHz allotted in 5.9 GHz
 - rates: 3-27 Mbps; MAC: CSMA/CA; range: up to 1 Km
 - Issues in DSRC
 - high traffic densities (numerous packet collisions, delay)
 - Vehicular VLC can play a complementary role to DSRC
 - IEEE 802.15.7 VLC standard PHY I
 - intended for outdoor, long-range, low data rate applications such as I2V and V2V communication
- $\bullet\,$ VLC is still an early stage technology for usage in ITS

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

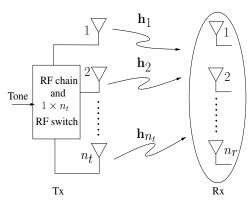
Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Part II RF Mirrors (Media-Based Modulation)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Modulation approaches


▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks

- Conventional view
 - Symbols from complex modulation alphabet (e.g., QAM/PSK) convey information bits
 - Channel fades viewed as causing amplitude/phase distortion to transmitted symbols
- Alternate view
 - View complex channel fade coefficients themselves to constitute a modulation alphabet
 - Example:
 - Space shift keying (SSK)

Space shift keying

- # tx. antennas, $n_t > 1$; # tx. RF chains, $n_{rf} = 1$
- Constellation: $\mathbb{H}_{ssk} = \{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_{n_t}\}$

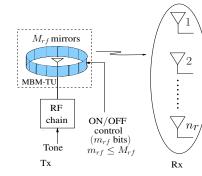
Y. A. Chau and S.-H. Yu, "Space modulation on wireless fading channels," in *Proc. IEEE 54th VTC'2001 (Fall)*, vol. 3, Oct. 2001, pp. 1668-1671.

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," *IEEE Trans. Wireless Commun.*, vol. 8, no. 7, pp. 3692-3703, Jul. 2009.

Parasitic elements

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)


- Parasitic elements
 - capacitors, varactors or switched capacitors that can adjust the resonance frequency
- Use of parasitic elements external to antennas
 - Applications
 - beamforming, DoA estimation
 - selection/switched diversity
 - reconfigurable antennas
- Indexing using parasitic elements
 - *aerial modulation:* index orthogonal antenna patterns realized using parasitic elements
 - *media-based modulation:* index channel fades realized using RF mirrors

O. N. Alrabadi, A. Kalis, C. B. Papadias, R. Prasad, "Aerial modulation for high order PSK transmission schemes," in *Wireless VITAE 2009*, May 2009, pp. 823-826.

A. K. Khandani, "Media-based modulation: A new approach to wireless transmission," in *Proc. IEEE ISIT '2013*, Jul. 2013, pp. 3050-3054.

Media-based modulation

Sac

- # tx. antennas, $n_t = 1$; # tx. RF chains, $n_{rf} = 1$
- # RF mirrors available, M_{rf}; # RF mirrors used, m_{rf}
- ON/OFF status of mirrors create independent fade realizations
- Constellation: $\mathbb{H}_{mbm} = \{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_{2^{m_{rf}}}\}$

(Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

[[]A] A. K. Khandani, "Media-based modulation: A new approach to wireless transmission," in *Proc. IEEE ISIT*'2013, Jul. 2013, pp. 3050-3054.

[[]B] A. K. Khandani, "Media-based modulation: Converting static Rayleigh fading to AWGN," in Proc. IEEE ISIT'2014, Jun-Jul. 2014, pp. 1549-1553.

[[]C] E. Seifi, M. Atamanesh, and A. K. Khandani, "Media-based modulation: A new frontier in wireless communications," online: arXiv:1507.07516v3 [cs.IT] 7 Oct 2015.

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

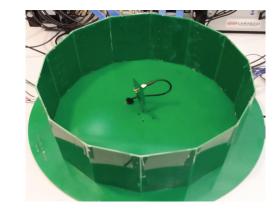
Concluding Remarks

- MBM
 - Multiple RF mirrors create channel fade alphabet $\mathbb{H}_{\tt mbm}$
 - Advantage
 - $|\mathbb{H}_{mbm}| = 2^{m_{ff}}; \quad \eta_{mbm} = m_{ff}$ bpcu
 - bpcu increases linearly with m_{rf}
 - better performance compared to conventional modulation
 - Issue
 - need to estimate $|\mathbb{H}_{\texttt{mbm}}| = 2^{m_{rf}}$ constellation points at the rx. through pilot transmission

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

MBM implementation

・ロト ・ 雪 ト ・ ヨ ト ・

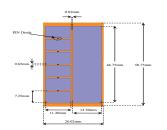

Э

Sac

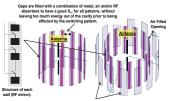
Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks


Source: E. Seifi, M. Atamanesh, and A. K. Khandani, "Media-based Modulation: Improving Spectral Efficiency Beyond Conventional MIMO," E&CE Department, University of Waterloo.

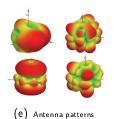
MBM implementation


Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

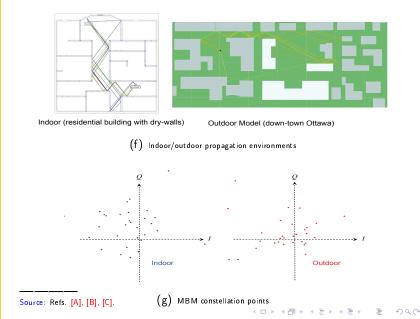
(C) RF mirror



Exterior metallic strips are placed around an external cylinder with openings to form a cavity. Reflections between walls of the external cylinder enriches the channel variations caused by switching of RF ON/OFF mirrors (walls of the interior cylinder).

(d) Cylindrical structure with RF mirrors

・ロト ・ 戸 ト ・ 日 ト ・ 日 ト


Sac

Source: Refs. [A], [B], [C].

MBM in indoor/outdoor environments

- Part 1: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC
- Part II: RF Mirrors (Media-Based Modulation)
- Concluding Remarks

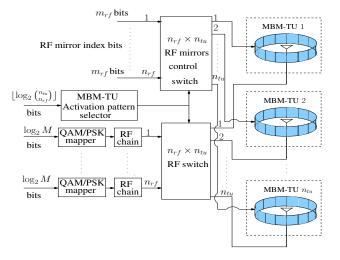
MBM: An instance of index modulation

Part 1: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

- Index modulation
 - bits are conveyed through indices of transmit entities
- Examples
 - Indexing in spatial domain in multiantenna systems
 - SSK, SM, GSM
 - Indexing in frequency domain in multicarrier systems
 - subcarrier index modulation in OFDM
 - Indexing in space and frequency
 - GSFIM (generalized space-frequency index modulation)


▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- Indexing in space and time
 - STIM (space-time index modulation)
- Indexing precoders
 - PIM (precoder index modulation)
- Indexing RF mirrors
 - MBM (media-based modulation)

GSM-MBM transmitter

VLC (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Y. Naresh and A. Chockalingam, "On media-based modulation using RF mirrors," in Proc. ITA'2016, San Diego, Feb. 2016. Also in IEEE Trans. Veh. Tech., Oct. 2016. IEEE Xplore: DOI: 10.1109/TVT.2016.2620989.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

- Information bits are conveyed through
 - MBM-TU indexing
 - n_{rf} out of n_{tu} MBM-TUs selected using $\lfloor \log_2 {n_{tu} \choose n_{rt}} \rfloor$ bits
 - M-ary modulation (QAM/PSK) symbols
 - n_{rf} *M*-ary symbols (formed using $n_{rf} \log_2 M$ bits) are sent on the selected MBM-TUs
 - RF mirror indexing
 - ON/OFF status of m_{rf} mirrors (mirror activation pattern) conveys m_{rf} bits per MBM-TU
- Achieved rate in GSM-MBM

$$\eta = \underbrace{\left\lfloor \log_2 \begin{pmatrix} n_{tu} \\ n_{ff} \end{pmatrix} \right\rfloor}_{\mathsf{MBM-TU index bits}} + \underbrace{n_{ff} m_{ff}}_{\mathsf{mirror index bits}} + \underbrace{n_{rf} \log_2 M}_{\mathsf{QAM/PSK symbol bits}} \mathsf{bpcu}$$

MBM performance

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

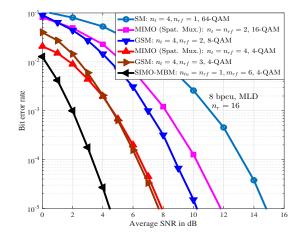


Figure : Comparison between SIMO-MBM with RF mirrors and other multi-antenna schemes without RF mirrors (MIMO, SM, GSM). 8 bpcu, $n_r = 16$, MLD.

GSM-MBM performance

Sac

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

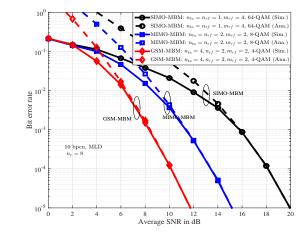


Figure : Performance of SIMO-MBM, MIMO-MBM, and GSM-MBM with $n_r = 8$, and 10 bpcu.

Concluding remarks

Part I: LIFI (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Base Modulation)

Concluding Remarks

• Visible light communication

- emerging complementary technology to RF communication
- LEDs act as transmitters. PDs act as receivers
- several hard-to-resist advantages (with matching challenges)

• Media-based modulation

- a promising approach for next generation wireless
- convey information by indexing antennas, subcarriers, time slots, precoders, RF mirrors
- rate, performance, hardware, and cost advantages
- Both are fast growing areas with great potential
 - several open areas for research and innovation
 - they add interesting dimensions to the state-of-the-art in wireless

Part I: LiFi (Visible Light Communication) LEDs and photo diodes VLC characteristics MIMO and OFDM in VLC QCM and DCM for VLC

Part II: RF Mirrors (Media-Based Modulation)

Concluding Remarks

Thank you

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

€ 990