Distributed learning over dynamic networks with adversarial agents

Pooja Vyavahare Assistant Professor Department of Electrical Engineering Indian Institute of Technology, Tirupati

June 28, 2019

Accepted in Fusion 2019

Joint work with

Dr. Nitin H. Vaidya Department of Computer Science Georgetown University

June 28, 2019

1 / 18

Dr. Lili Su Postdoc CSAIL, MIT

三日 のへの

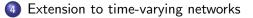
ヘロン 人間 とくほど 人間と

< 日 > < 同 > < 回 > < 回 > < 回 > <

三日 のへの

4 Extension to time-varying networks

ELE DOG

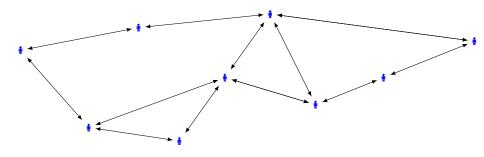


June 28, 2019 2 / 18

- 🔹 🖻

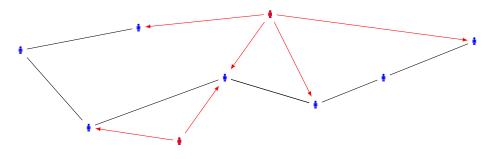
ELE DOG

Distributed (hypothesis testing) learning



- Example: Social networks, sensor networks.
- Each agent wants to know the state of the environment.
- Example: everyone wants to know "best college to attend"

Distributed (hypothesis testing) learning



- There are some adversarial agents in the network.
- We consider Byzantine faults scenario.
- Adversarial agents may send arbitrary information and may not follow the specified algorithm.

June 28, 2019

3 / 18

Motivation

Distributed (hypothesis testing) learning



- At every time slot *t*, each agent collects *partial* information about the state of the environment.
- There are *m* possible states of the environment but there is only one true state.
- Can agents learn the true state?

• *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known
- A finite set $\{\theta_1, \ldots, \theta_m\}$ of possible states; but only one true state θ^*

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known
- A finite set $\{ heta_1,\ldots, heta_m\}$ of possible states; but only one true state $heta^*$
- s_i^t is the signal observed by agent i at time t which comes from marginal distribution l_i(s_i^t |θ_j)

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known
- A finite set $\{ heta_1,\ldots, heta_m\}$ of possible states; but only one true state $heta^*$
- s_i^t is the signal observed by agent i at time t which comes from marginal distribution l_i(s_i^t |θ_j)
- Local communication: One hop neighbors

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known
- A finite set $\{ heta_1,\ldots, heta_m\}$ of possible states; but only one true state $heta^*$
- s_i^t is the signal observed by agent i at time t which comes from marginal distribution l_i(s_i^t |θ_j)
- Local communication: One hop neighbors
- Each agent maintains a stochastic vector $\mu_i^t \in \mathbb{R}^m$ over all states

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

- *n* agents are connected via a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Set of adversarial agents $\mathcal{F} \subset \mathcal{V}$; $|\mathcal{F}| = \phi \leq f$
- \mathcal{F} is not known to the good agents but f is known
- A finite set $\{\theta_1,\ldots,\theta_m\}$ of possible states; but only one true state θ^*
- s_i^t is the signal observed by agent i at time t which comes from marginal distribution l_i(s_i^t |θ_j)
- Local communication: One hop neighbors
- Each agent maintains a stochastic vector $\mu_i^t \in \mathbb{R}^m$ over all states
- Can all the good agents learn the true state?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

• without adversarial agents

<日><目><目><目><目><目><目><目
 <日><<日><

• without adversarial agents

 Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]

Image: Image:

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

• with adversarial agents

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

with adversarial agents

 Using distributed consensus algorithm with faulty agents by [Su and Vaidya, 2016]

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

with adversarial agents

- Using distributed consensus algorithm with faulty agents by [Su and Vaidya, 2016]
- Existing literature network condition:

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

with adversarial agents

- Using distributed consensus algorithm with faulty agents by [Su and Vaidya, 2016]
- Existing literature network condition:

Condition (Network condition NC)

All the good agents in the network should be able to achieve vector consensus via iteratively sharing information with one hop neighbors.

- 4 母 ト 4 ヨ ト ヨ ヨ - の Q ()

• without adversarial agents

- Non-Bayesian learning by using distributed consensus algorithm first proposed by [Jadbabaie et al., 2012]
- Many variants of system model; survey of results in [Nedić et al., 2016]

with adversarial agents

- Using distributed consensus algorithm with faulty agents by [Su and Vaidya, 2016]
- Existing literature network condition:

Condition (Network condition NC)

All the good agents in the network should be able to achieve vector consensus via iteratively sharing information with one hop neighbors.

Condition (Identifiability condition IC)

A source component (strongly connected with no incoming edge) of good agents can estimate the true state.

• Transmit the vector $\log \mu_{t-1}^i$ on all outgoing links

ト 三 三 の Q (P)

- Transmit the vector $\log \mu_{t-1}^i$ on all outgoing links
- Find a point η_t^i in the convex hull of all good agents' vectors in neighborhood of *i*:

- Transmit the vector $\log \mu_{t-1}^i$ on all outgoing links
- Find a point η_t^i in the convex hull of all good agents' vectors in neighborhood of *i*:
 - Finding the Tverberg point of all subsets of incoming messages of size (m+1)f + 1 Go to definition

- Transmit the vector $\log \mu_{t-1}^i$ on all outgoing links
- Find a point η_t^i in the convex hull of all good agents' vectors in neighborhood of *i*:
 - Finding the Tverberg point of all subsets of incoming messages of size (m+1)f + 1 Go to definition
- Observe the signal s_t^i and update the marginal distribution

- Transmit the vector $\log \mu_{t-1}^i$ on all outgoing links
- Find a point η_t^i in the convex hull of all good agents' vectors in neighborhood of *i*:
 - Finding the Tverberg point of all subsets of incoming messages of size (m+1)f + 1 Go to definition
- \bullet Observe the signal s_t^i and update the marginal distribution
- Update the vector μ_t^i based on the distribution of observed signal and η_t^i

Algorithm analysis

$$\eta_t^i(heta) = \sum_{j=1}^{n-\phi} \mathbf{A}_{ij}[t] \log \mu_{t-1}^j(heta) \;\; orall heta$$

where $\mathbf{A}[t]$ is a random row stochastic matrix which depends on the cumulative observed signals till time t and the behavior of faulty agents.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Algorithm analysis

$$\eta_t^i(heta) = \sum_{j=1}^{n-\phi} \mathbf{A}_{ij}[t] \log \mu_{t-1}^j(heta) \;\; orall heta$$

where $\mathbf{A}[t]$ is a random row stochastic matrix which depends on the cumulative observed signals till time t and the behavior of faulty agents.

$$\phi_t^i(\theta, \theta^*) := \log \frac{\mu_t^i(\theta)}{\mu_t^i(\theta^*)} = \underbrace{\sum_{j=1}^{n-\phi} \mathbf{A}_{ij}[t] \phi_{t-1}^j(\theta, \theta^*)}_{\text{Other agents' influence}} + \underbrace{\sum_{k=1}^t \mathcal{L}_k^i(\theta, \theta^*)}_{\text{Agent's private signal influence}}$$

where
$$\mathcal{L}_{k}^{i}(heta, heta^{*}) := \log rac{l_{i}(s_{k}^{i}| heta)}{l_{i}(s_{k}^{i}| heta^{*})}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Analysis (cont...)

$$\phi_t^i(\theta,\theta^*) = \sum_{r=1}^t \sum_{j=1}^{n-\phi} \mathbf{\Phi}_{ij}(t,r+1) \sum_{k=1}^r \mathcal{L}_k^j(\theta,\theta^*)$$

Problem statement

Analysis (cont...)

$$\phi_t^i(\theta,\theta^*) = \sum_{r=1}^t \sum_{j=1}^{n-\phi} \mathbf{\Phi}_{ij}(t,r+1) \sum_{k=1}^r \mathcal{L}_k^j(\theta,\theta^*)$$

where $\mathbf{\Phi}(t,r) = \mathbf{A}[t] \dots \mathbf{A}[r]$ for $r \in [1,t+1]$

Result [Su and Vaidya, 2016]

 Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.

> = = ~ ~ ~

Result [Su and Vaidya, 2016]

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty$.

▲目▶ 三日 のへの

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty.$
- When network of good agents is capable of achieving consensus (Condition NC) then,

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r) = \mathbf{1}\pi(r).$$

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty.$
- When network of good agents is capable of achieving consensus (Condition NC) then,

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r) = \mathbf{1}\pi(r).$$

• Identifiability condition (Condition IC):

・ロト ・同ト ・ヨト ・ヨト ・ ション ののの

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty.$
- When network of good agents is capable of achieving consensus (Condition NC) then,

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r) = \mathbf{1}\pi(r).$$

- Identifiability condition (Condition IC):
 - ► In the graph defined by A[t] at time t, there is only one source component S.

・ロト ・同ト ・ヨト ・ヨト ・ ション ののの

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty.$
- When network of good agents is capable of achieving consensus (Condition NC) then,

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r) = \mathbf{1}\pi(r).$$

- Identifiability condition (Condition IC):
 - In the graph defined by A[t] at time t, there is only one source component S.
 - ► *S* has a path to every good agent in the network.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ◆ ● ◆

- Every good agent *i* will concentrate its vector on the true state θ^{*} almost surely, i.e., μⁱ_t(θ) ^{a.s.}→ 0 ∀θ ≠ θ^{*}.
- It is sufficient to show that $\phi_t^i(\theta, \theta^*) \xrightarrow{\text{a.s.}} -\infty.$
- When network of good agents is capable of achieving consensus (Condition NC) then,

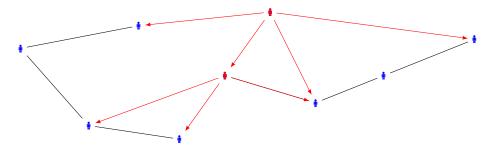
$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r) = \mathbf{1}\pi(r).$$

- Identifiability condition (Condition IC):
 - In the graph defined by A[t] at time t, there is only one source component S.
 - ► *S* has a path to every good agent in the network.
 - Agents in *S* can collectively estimate the true state.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ◆ ● ◆

Relaxing the network condition

• The network of good agents may not be able to achieve distributed consensus.



• After removing the faulty agents, the network may have more than one connected component.

Image: A matrix and a matrix

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.

▲ ∃ ► ∃ = √Q ∩

٥

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r)\neq \mathbf{1}\pi(r).$$

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.
 - $\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r)\neq \mathbf{1}\pi(r).$

• Relaxed IC:

٥

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r)\neq \mathbf{1}\pi(r).$$

• Relaxed IC:

٥

Every graph corresponding to A[t] may have one or more source components.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r)\neq \mathbf{1}\pi(r).$$

• Relaxed IC:

٥

- Every graph corresponding to A[t] may have one or more source components.
- Every good agent has a path from at least one such component.

- After removing the faulty agents, the network may have more than one connected component.
- After removing the faulty agents, the network may be weakly connected and each agent might be receiving information from disjoint components.

$$\lim_{t\geq r,t\to\infty} \mathbf{\Phi}(t,r)\neq \mathbf{1}\pi(r).$$

• Relaxed IC:

٥

- Every graph corresponding to A[t] may have one or more source components.
- Every good agent has a path from at least one such component.
- ► Agents of each component *S* can collectively estimate the true state.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のので

Under relaxed network condition, each good agent in the graph corresponding to A[t] has at least (m + 1)f + 1 incoming edges.

- Under relaxed network condition, each good agent in the graph corresponding to A[t] has at least (m+1)f + 1 incoming edges.
- 2 For every good agent *i*, there exists a source component S_i such that

$$\Phi_{ij}(t, r+1) \ge \beta > 0 \quad \forall j \in S_i, t-r \ge \nu$$

- Under relaxed network condition, each good agent in the graph corresponding to A[t] has at least (m+1)f + 1 incoming edges.
- **2** For every good agent *i*, there exists a source component S_i such that

$$\Phi_{ij}(t, r+1) \geq \beta > 0 \quad \forall j \in S_i, t-r \geq \nu$$

3

$$\sum_{r=1}^t r \sum_{j=1}^{n-\phi} \mathbf{\Phi}_{ij}(t,r+1) \mathcal{H}_j(heta, heta^*) \leq -Ct^2$$

where C is a constant and $H_j(\theta, \theta^*) = -D(I_j(.|\theta^*)||I_j(.|\theta))$ is the negative of the KL divergence between states' marginal distribution.

- Under relaxed network condition, each good agent in the graph corresponding to A[t] has at least (m+1)f + 1 incoming edges.
- **2** For every good agent *i*, there exists a source component S_i such that

$$\Phi_{ij}(t, r+1) \geq \beta > 0 \quad \forall j \in S_i, t-r \geq \nu$$

3

$$\sum_{r=1}^t r \sum_{j=1}^{n-\phi} \mathbf{\Phi}_{ij}(t,r+1) \mathcal{H}_j(heta, heta^*) \leq -Ct^2$$

where C is a constant and $H_j(\theta, \theta^*) = -D(I_j(.|\theta^*)||I_j(.|\theta))$ is the negative of the KL divergence between states' marginal distribution.

$$\phi_t^i(\theta,\theta^*) = \sum_{r=1}^t \sum_{j=1}^{n-\phi} \mathbf{\Phi}_{ij}(t,r+1) \sum_{k=1}^r \mathcal{L}_k^j(\theta,\theta^*) \xrightarrow{\text{a.s.}} -\infty$$

Our result

June 28, 2019 12 / 18

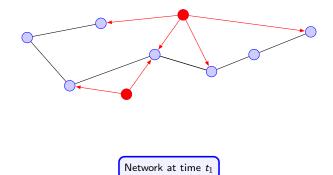
Our result

Theorem

Under relaxed identifiability and connectivity conditions for graph of $\mathbf{A}[t]$, for the distributed algorithm every agent *i* will concentrate its vector on the true state θ^* almost surely, i.e., $\mu_t^i(\theta) \xrightarrow{\text{a.s.}} 0 \ \forall \theta \neq \theta^*$.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のので

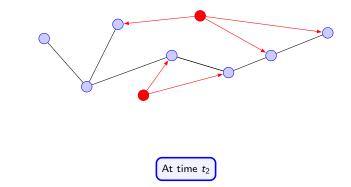
Learning with time-varying networks



• A sequence of graphs $\{\mathcal{G}_t | t = 1, 2, \ldots\}$

ヨト ヨヨ ののの

Learning with time-varying networks



- A sequence of graphs $\{\mathcal{G}_t | t = 1, 2, \ldots\}$
- \bullet Set of faulty agents ${\cal F}$ is fixed across time.

• Source component and connectivity conditions defined on union of $B < \infty$ consecutive graphs.

- Source component and connectivity conditions defined on union of $B < \infty$ consecutive graphs.
- Every source component in any union of B < ∞ consecutive graphs of A[t] can estimate the true state.

- Source component and connectivity conditions defined on union of $B < \infty$ consecutive graphs.
- Every source component in any union of B < ∞ consecutive graphs of A[t] can estimate the true state.

- Source component and connectivity conditions defined on union of $B < \infty$ consecutive graphs.
- Every source component in any union of B < ∞ consecutive graphs of A[t] can estimate the true state.

Theorem

Under identifiability of true state by union of a finite sequence of graphs corresponding to $\mathbf{A}[t]$, for the distributed algorithm every agent *i* will concentrate its vector on the true state θ^* almost surely, i.e., $\mu_t^i(\theta) \xrightarrow{\text{a.s.}} 0 \ \forall \theta \neq \theta^*$.

• Necessary condition for network topology to learn true state.

Image: A matrix and a matrix

∃ ►

▲ I ► ► E ► 9 Q Q

- Necessary condition for network topology to learn true state.
- Convergence time of the algorithm.

313 9QQ

- Necessary condition for network topology to learn true state.
- Convergence time of the algorithm.
- Asynchronous systems with faulty agents.

- Necessary condition for network topology to learn true state.
- Convergence time of the algorithm.
- Asynchronous systems with faulty agents.
- Distributed learning with communication errors.

Bibliography I

Jadbabaie, A., Molavi, P., Sandroni, A., and Tahbaz-Salehi, A. (2012). Non-baysian social learning.

Games and Economic Behavior, 76:210–225.

- Nedić, A., Olshevsky, A., and Uribe, C. A. (2016).
 A tutorial on distributed (non-bayesian) learning: Problem, algorithms and results.
 In 55th IEEE Conf. on Decision and Control, pages 6795–6801.
 - Su, L. and Vaidya, N. H. (2016).

Non-bayesian learning in the presence of byzantine agents.

In International Symposium on Distributed Computing, pages 414-427. Springer.

▲ ∃ ► ∃ = √Q ∩

Thank You

<□> 4回> 4回> 4回> 4回> 4回> 4回> 4回>

Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ◆ ● ◆

Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

• Points in $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i)$ are called Tverberg point.

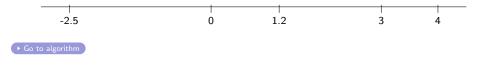
▶ Go to algorithm

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ◆ ● ◆

Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

- Points in $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i)$ are called Tverberg point.
- Example for one dimensional case m = 1 and single faulty agent f = 1:

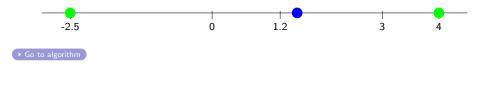


・ロト ・同ト ・ヨト ・ヨト ・ ション ののの

Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

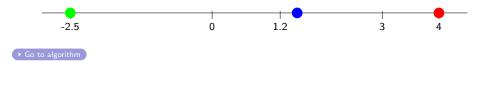
- Points in $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i)$ are called Tverberg point.
- Example for one dimensional case m = 1 and single faulty agent f = 1:



Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

- Points in $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i)$ are called Tverberg point.
- Example for one dimensional case m = 1 and single faulty agent f = 1:



Theorem (Tverberg Theorem)

For any integer $f \ge 1$, for every multiset Y containing at least (m+1)f + 1 vectors in \mathbb{R}^m , there exists a partition Y_1, \ldots, Y_{f+1} of Y into f + 1 nonempty multisets such that $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i) \neq \emptyset$.

- Points in $\bigcap_{i=1}^{f+1} \mathcal{H}(Y_i)$ are called Tverberg point.
- Example for one dimensional case m = 1 and single faulty agent f = 1:

