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Distributed (hypothesis testing) learning
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Example: Social networks, sensor networks.

Each agent wants to know the state of the environment.

Example: everyone wants to know “best college to attend”
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There are some adversarial agents in the network.

We consider Byzantine faults scenario.

Adversarial agents may send arbitrary information and may not follow
the specified algorithm.
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At every time slot t, each agent collects partial information about the
state of the environment.
There are m possible states of the environment but there is only one
true state.
Can agents learn the true state?
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Problem formulation

n agents are connected via a directed graph G = (V, E)

Set of adversarial agents F ⊂ V; |F| = φ ≤ f

F is not known to the good agents but f is known

A finite set {θ1, . . . , θm} of possible states; but only one true state θ∗

sti is the signal observed by agent i at time t which comes from
marginal distribution li (s

t
i |θj)

Local communication: One hop neighbors

Each agent maintains a stochastic vector µti ∈ Rm over all states

Can all the good agents learn the true state?
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Existing literature

without adversarial agents

I Non-Bayesian learning by using distributed consensus algorithm first
proposed by [Jadbabaie et al., 2012]

I Many variants of system model; survey of results in [Nedić et al., 2016]

with adversarial agents

I Using distributed consensus algorithm with faulty agents by
[Su and Vaidya, 2016]

Existing literature network condition:

Condition (Network condition NC)

All the good agents in the network should be able to achieve vector
consensus via iteratively sharing information with one hop neighbors.

Condition (Identifiability condition IC)

A source component (strongly connected with no incoming edge) of good
agents can estimate the true state.
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Algorithm for fault-tolerant learning [Su and Vaidya, 2016]

Transmit the vector logµit−1 on all outgoing links

Find a point ηit in the convex hull of all good agents’ vectors in
neighborhood of i :

I Finding the Tverberg point of all subsets of incoming messages of size
(m + 1)f + 1 Go to definition

Observe the signal s it and update the marginal distribution

Update the vector µit based on the distribution of observed signal and
ηit
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Algorithm for fault-tolerant learning [Su and Vaidya, 2016]

Transmit the vector logµit−1 on all outgoing links

Find a point ηit in the convex hull of all good agents’ vectors in
neighborhood of i :

I Finding the Tverberg point of all subsets of incoming messages of size
(m + 1)f + 1 Go to definition

Observe the signal s it and update the marginal distribution

Update the vector µit based on the distribution of observed signal and
ηit

Problem statement June 28, 2019 6 / 18



Algorithm for fault-tolerant learning [Su and Vaidya, 2016]

Transmit the vector logµit−1 on all outgoing links

Find a point ηit in the convex hull of all good agents’ vectors in
neighborhood of i :

I Finding the Tverberg point of all subsets of incoming messages of size
(m + 1)f + 1 Go to definition

Observe the signal s it and update the marginal distribution

Update the vector µit based on the distribution of observed signal and
ηit

Problem statement June 28, 2019 6 / 18



Algorithm for fault-tolerant learning [Su and Vaidya, 2016]

Transmit the vector logµit−1 on all outgoing links

Find a point ηit in the convex hull of all good agents’ vectors in
neighborhood of i :

I Finding the Tverberg point of all subsets of incoming messages of size
(m + 1)f + 1 Go to definition

Observe the signal s it and update the marginal distribution

Update the vector µit based on the distribution of observed signal and
ηit

Problem statement June 28, 2019 6 / 18



Algorithm for fault-tolerant learning [Su and Vaidya, 2016]

Transmit the vector logµit−1 on all outgoing links

Find a point ηit in the convex hull of all good agents’ vectors in
neighborhood of i :

I Finding the Tverberg point of all subsets of incoming messages of size
(m + 1)f + 1 Go to definition

Observe the signal s it and update the marginal distribution

Update the vector µit based on the distribution of observed signal and
ηit

Problem statement June 28, 2019 6 / 18



Algorithm analysis

ηit(θ) =

n−φ∑
j=1

Aij [t] logµjt−1(θ) ∀θ

where A[t] is a random row stochastic matrix which depends on the
cumulative observed signals till time t and the behavior of faulty agents.

φit(θ, θ
∗) := log

µit(θ)

µit(θ
∗)

=

n−φ∑
j=1

Aij [t]φjt−1(θ, θ∗)︸ ︷︷ ︸
Other agents’ influence

+
t∑

k=1

Lik(θ, θ∗)︸ ︷︷ ︸
Agent’s private signal influence

where Lik(θ, θ∗) := log
li (s

i
k |θ)

li (s
i
k |θ∗)
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Analysis (cont...)

φit(θ, θ
∗) =

t∑
r=1

n−φ∑
j=1

Φij(t, r + 1)
r∑

k=1

Ljk(θ, θ∗)

where Φ(t, r) = A[t] . . .A[r ] for r ∈ [1, t + 1]
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Result [Su and Vaidya, 2016]

Every good agent i will concentrate its vector on the true state θ∗

almost surely, i.e., µit(θ)
a.s.−−→ 0 ∀θ 6= θ∗.

It is sufficient to show that φit(θ, θ
∗)

a.s.−−→ −∞.
When network of good agents is capable of achieving consensus
(Condition NC) then,

lim
t≥r ,t→∞

Φ(t, r) = 1π(r).

Identifiability condition (Condition IC):

I In the graph defined by A[t] at time t, there is only one source
component S .

I S has a path to every good agent in the network.
I Agents in S can collectively estimate the true state.
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Relaxing the network condition

The network of good agents may not be able to achieve distributed
consensus.

x
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x
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Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:

I Every graph corresponding to A[t] may have one or more source
components.

I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:

I Every graph corresponding to A[t] may have one or more source
components.

I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:

I Every graph corresponding to A[t] may have one or more source
components.

I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:

I Every graph corresponding to A[t] may have one or more source
components.

I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:
I Every graph corresponding to A[t] may have one or more source

components.

I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:
I Every graph corresponding to A[t] may have one or more source

components.
I Every good agent has a path from at least one such component.

I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Relaxed conditions

After removing the faulty agents, the network may have more than
one connected component.

After removing the faulty agents, the network may be weakly
connected and each agent might be receiving information from
disjoint components.

lim
t≥r ,t→∞

Φ(t, r) 6= 1π(r).

Relaxed IC:
I Every graph corresponding to A[t] may have one or more source

components.
I Every good agent has a path from at least one such component.
I Agents of each component S can collectively estimate the true state.

Our result June 28, 2019 11 / 18



Proof outline

1 Under relaxed network condition, each good agent in the graph
corresponding to A[t] has at least (m + 1)f + 1 incoming edges.

2 For every good agent i , there exists a source component Si such that

Φij(t, r + 1) ≥ β > 0 ∀j ∈ Si , t − r ≥ ν

3

t∑
r=1

r

n−φ∑
j=1

Φij(t, r + 1)Hj(θ, θ
∗) ≤ −Ct2

where C is a constant and Hj(θ, θ
∗) = −D(lj(.|θ∗)||lj(.|θ)) is the

negative of the KL divergence between states’ marginal distribution.

4

φit(θ, θ
∗) =

t∑
r=1

n−φ∑
j=1

Φij(t, r + 1)
r∑

k=1

Ljk(θ, θ∗)
a.s.−−→ −∞

Our result June 28, 2019 12 / 18
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Proof outline

1 Under relaxed network condition, each good agent in the graph
corresponding to A[t] has at least (m + 1)f + 1 incoming edges.
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Our result

Theorem

Under relaxed identifiability and connectivity conditions for graph of
A[t], for the distributed algorithm every agent i will concentrate its vector
on the true state θ∗ almost surely, i.e., µit(θ)

a.s.−−→ 0 ∀θ 6= θ∗.
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Learning with time-varying networks

Network at time t1

A sequence of graphs {Gt |t = 1, 2, . . .}

Set of faulty agents F is fixed across time.
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Learning with time-varying networks

At time t2

A sequence of graphs {Gt |t = 1, 2, . . .}
Set of faulty agents F is fixed across time.
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Relaxed conditions: NC and IC

Source component and connectivity conditions defined on union of
B <∞ consecutive graphs.

Every source component in any union of B <∞ consecutive graphs
of A[t] can estimate the true state.

Theorem

Under identifiability of true state by union of a finite sequence of
graphs corresponding to A[t], for the distributed algorithm every agent i
will concentrate its vector on the true state θ∗ almost surely, i.e.,
µit(θ)

a.s.−−→ 0 ∀θ 6= θ∗.
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Open questions

Necessary condition for network topology to learn true state.

Convergence time of the algorithm.

Asynchronous systems with faulty agents.

Distributed learning with communication errors.

Discussion June 28, 2019 16 / 18
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Teverberg point

Theorem (Tverberg Theorem)

For any integer f ≥ 1, for every multiset Y containing at least
(m + 1)f + 1 vectors in Rm, there exists a partition Y1, . . . ,Yf +1 of Y
into f + 1 nonempty multisets such that ∩f +1

i=1H(Yi ) 6= ∅.

Points in ∩f +1
i=1H(Yi ) are called Tverberg point.

Example for one dimensional case m = 1 and single faulty agent
f = 1:

Go to algorithm
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