
















6. 
 

Given that, 

𝑧(𝑛) = 0.9 𝐼(𝑛) + 0.4 𝐼(𝑛 − 1) + 𝑣(𝑛) 

𝒛 = [ 𝑧(1),   𝑧(2), … ,   𝑧(6) ] = [ −1.1,   0.4,   1.5,   1.2,   − 0.6,   − 1.2 ] 

𝑁 = 6, 𝐿 = 2 

𝐼(𝑛) ∈ {−1,1}  ⇒ 𝑀 = 2 

⇒ 𝑰𝑁 ∈ {−1,1}6 

#𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑀𝑁 = 64 

 

(a) 
Fig. 6.1. shows the Trellis for a single stage of the Viterbi Algorithm (VA). Note that the 

number of states at each time instance is 𝑀𝐿−1 = 2.  For simplicity, the states and transitions 

corresponding to the symbol 𝐼(𝑘) = −1 are marked as 0. Also, the values of 𝑧𝑝→𝑞(𝑘) =

0.9 𝐼𝑞(𝑘) + 0.4 𝐼𝑝(𝑘 − 1) are provided adjacent to the branches of the Trellis. These are 

required to compute the transition metrics 𝑇𝑀𝑝→𝑞(𝑘).  

 

 
Fig. 6.1. Trellis for a single stage of the VA.



(b) 
For the given sequence of received signal samples 𝒛, the VA is performed with the assumption that 𝐼(0) = −1 in order to recover the symbol sequence 

[ 𝐼(1), 𝐼(2), … , 𝐼(6)].  The stages of the algorithm are shown in Fig. 6.2. Based on the incoming samples 𝑧(𝑘) and using 𝑧𝑝→𝑞(𝑘) provided in Fig. 6.1., 

the transition metrics 𝑇𝑀𝑝→𝑞(𝑘) = (𝑧(𝑘) − 𝑧𝑝→𝑞(𝑘))
2

 are computed (marked in PURPLE adjacent to corresponding branches). Using these transition 

metrics and the assumption that 𝐶𝑀0(0) = 0, cumlative metric corresponding to the node ‘𝑞’ at time ‘𝑘’ are computed as 𝐶𝑀𝑞(𝑘) =

min
𝑝∈{0,1}

𝐶𝑀𝑝(𝑘 − 1) + 𝑇𝑀𝑝→𝑞(𝑘) and are provided in BLUE adjacent to the nodes. The branches which survived are marked in YELLOW. 

 

Fig. 6.2. VA for the given sequence of the received signal samples [ 𝑧(1), 𝑧(2), … , 𝑧(6) ].  



(c) 
By finding the node having the least cumulative cost at stage 𝑛 = 6 and tracing back the survivors which resulted in that cost (as shown in Fig. 6.3.), the 

Maximum Likelihood sequence is estimated as 
 

 
 

�̂�𝑁 = [𝐼(1),   𝐼(2),   …,   𝐼(6)] = [ −1,   1,   1,   1, −1, −1 ] 
  

 

  
 

 
Fig. 6.3. Resulting MLSE sequence from the VA for the given sequence [ 𝑧(1), 𝑧(2), … , 𝑧(6) ]. 



To verify this result, we shall search over 𝑀𝑁 = 64 sequences and find the sequence of 

symbols which minimizes ∑ [𝑧(𝑛) − 0.9 𝐼(𝑛) − 0.4 𝐼(𝑛 − 1)]26
𝑛=1 . The simulation is done in 

MATLAB and the code is shown below. 

 

 

clc; clear all; close all; 

M=2; 

f=[0.9 0.4]; 

z=[-1.1 0.4 1.5 1.2 -0.6 -1.2]; 

L=length(f); 

N=length(z); 

 

% list of possible binary sequences 

seq_lib=fliplr(de2bi(0:M^N-1,log2(M^N))); 

for ii=1:M^N 

    z_h(ii,:)=conv(f,[-1 2*seq_lib(ii,:)-1]); 

end 

z_h(:,[1 end])=[]; 

[~,mlse_idx]=min(vecnorm((z-z_h)')); 

mlse_seq=seq_lib(mlse_idx,:); 

fprintf('Sequence with Maximum Likelihood (MLSE):\n'); 

disp(2*mlse_seq-1); 

 
 

The result obtained is as follows. 
 

 

Sequence with Maximum Likelihood (MLSE): 

    -1     1     1     1    -1    -1 

 
 

Thus, the sequence estimated by the VA matches with the one obtined with 𝑀𝑁 dimensional 

search. 



3.  

(a) 8-PSK 

 
Distance from s1 to nearest neighbors s2 and s8 is 2d. Then, 
probability of error, 

Pe = Pe12+Pe18 = 2q(d) 

This follows from the lecture. 

Minimum distance for 8-PSK is 2 sqrt(Es) sin(pi/8) 

(b) Circular 8-QAM 

 
We have 8 constellation points. For the circular 8-QAM constellation 
shown, four of them are along the smaller radius r1 = sqrt(2) and four 
along the larger radius r2 = 1+sqrt(3). So, we calculate error 



probability of one symbol from each of the two sets. For example, we 
can choose s1 from the inner circle and s5 from the outer circle. The 
coordinates of s1 are (1,1) and that of s5 are (0,1+sqrt(3)). 

We consider s1 and try to find its nearest neighbors by calculating the 
distance to the four symbols near it. The distance to s4 and s2 can be 
shown to be 2 and the distance to s5 and s6 can also be shown to be 2. 
Thus, all four of these points are at minimum distance from s1. Then, 
the probability of error for s1 is 4q(dmin) = 4q(2). 

The outer points have two nearest neighbors, and so their probability 
of error is 2q(dmin). Thus, for the modulation scheme, average 
probability of symbol error is 3*q(dmin) = 3q(2) = 0.0683. 

Average symbol energy for 8-QAM is Es, avg = (r12+r22)/2 = 3+sqrt(3) 

For the same energy per bit (equivalently, energy per symbol as both 
constellations have the same number of bits), 8-PSK needs the 
minimum distance: dmin8PSK = 2 sqrt(3+sqrt(3)) sin(pi/8) 

Here we substitute the average symbol energy for 8QAM in the 
expression of minimum distance for 8PSK. The above expression 
evaluates to 1.6649. Thus, the corresponding probability of symbol 
error for 8PSK is 2q(1.6649) = 0.0959.  

From the probability of error values, it can be concluded that 8QAM 
has lower approximate Pe. This is justified by the fact that it has a 
greater minimum distance for the same symbol energy. The minimum 
distance is enough to offset the fact that 8QAM has a larger number of 
nearest neighbors. 

4. (a)  
B/W = 2 MHz, QPSK symbols and sinc pulse shaping (Beta=0) 

Bit rate = (Bandwidth/(1+Beta))*log2(M) where M is the number of 
constellation points. 

Here, bit rate = 4 Mbps. 

(b) For Beta=0.5, to preserve Bit rate = 4 Mbps, 

Log2(M) = 4*(1.5/2)=3 or M=8. 

So we need 8PSK. 

For Beta =1, Log2(M) = 4*(2/2)=4 or M=16. 

We need 16-PSK to preserve the bit rate for Beta=1. 
 


