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Proposal for a standard micromagnetic problem:
Spin wave dispersion in a magnonic waveguide

G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev, M. Mruczkiewicz, H. Fangohr, A. Barman, M. Krawczyk, and
A. Prabhakar

Abstract—We propose a standard micromagnetic problem, of
a nanostripe of permalloy. We study the magnetization dynamics
and describe methods of extracting features from simulations.
Spin wave dispersion curves, relating frequency and wave vector,
are obtained for wave propagation in different directions relative
to the axis of the waveguide and the external applied field.
Simulation results using both finite element (Nmag) and finite
difference (OOMMF) methods are compared against analytic
results, for different ranges of the wave vector.

Index Terms—Computational micromagnetics, spin wave dis-
persion, exchange dominated spin waves

INTRODUCTION

There have been steady improvements in computational
micromagnetics in recent years, both in techniques as well as
in the use of graphical processing units (GPUs) [1]–[4]. These
are complemented by efforts to compute the magnetization dy-
namics in various kinds of magnonic crystals and waveguides,
of different geometries and made of different materials [5]–[7].
The dispersion relation, ω(k), provides valuable insights into
the characteristics of propagating spin waves (SWs), and aids
in our pursuit of building functional devices around magnonic
waveguides [8]–[10]. Dispersion relations have traditionally
been obtained using experimental means, which often means
multiple experimental runs and associated costs and delays.
Analytic solutions must rely on approximations that simplify
the details of an experiment. Computational methods offer
a compromise between the two, although agreement with
analytic solutions can become elusive. This becomes evident
in some of the figures in this article, where we observe
good agreement in the dispersion relation for the fundamental
propagating mode, but gradual disagreement as we study
higher order modes. Our primary goal is to define a standard
problem and provide sufficient numerical and analytic support
to establish the dynamics in a simple magnonic waveguide.

The Landau-Lifshitz-Gilbert (LLG) [11] equation is the
governing differential equation that describes the magnetiza-
tion dynamics. There are many packages and methods used to
solve the LLG equation. Among them are the Object Oriented
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Micromagnetic Framework (OOMMF) [12], LLG [13], Micro-
magus [14] and Nmag [15]. We rely on the finite difference
method (FDM) adopted by OOMMF and the finite element
method (FEM) used in Nmag. The latter is more suitable for
geometries with irregular edges [16]. However, the compu-
tation overhead and management of resources become major
issues in FEM simulations. To compare different numerical
solvers, the Micromagnetic Modeling Activity Group (µMag)
publishes standard problems for micromagnetism [17]–[19].
A more recent addition included the effects of spin transfer
torque [20]. However, there has thus far been no standard
problem that includes the calculation of the spin wave dis-
persion of a magnonic waveguide. We believe that specifying
a standard problem will promote the use of micromagnetic
simulations and assist in the design of experiments to observe
magnetization dynamics.

I. PROBLEM SELECTION

For a standard problem, we require that (a) different
simulation tools can produce the same initial magnetization
configuration, (b) the excitation field perturbs the magneti-
zation sufficiently to excite multiple spin wave modes (c)
computational times are reasonable, and (d) the results can
be verified, preferably compared against analytic expressions.
We define a problem that satisfies these criteria.
• The problem is separated into two sub problems which

are tackled with two different simulations. The first deals
with obtaining the initial magnetization for the configura-
tion by applying the bias field along a direction suitable
for the configuration. The resulting relaxed magnetization
state obtained is used as initial magnetization for the
following step.

• We apply an excitation that is varying as a sinc pulse
in both time and space. Various other excitations were
tried out but the one mentioned above led to the optimum
dispersion curves. The sinc concentrates the SW power
in a window in the frequency domain, and the dispersion
curve obtained is prominent in detail. In particular, the
excitation would launch all the modes in the frequency
range of interest. The same logic was applied in determin-
ing the wave vector range of the excitation. The excitation
should also be continuous in time, i.e., the amplitude
of the excitation is determined at each time-step of the
solver and not at any pre-determined time instants. Both
OOMMF and NMAG had provisions to do this.

• In the relaxation simulation, the damping parameter α, in
the LLG equation, is kept high for faster convergence. At
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the same time, the convergence criterion is made stiffer
to avoid a loss of accuracy. For the second simulation,
we disable the convergence criterion (on the time rate
of change of magnetization) and stopped the simulation
after a given length of time.

• We save magnetization data (as a function of space and
time), as provided by the packages used for the simula-
tion. This data is then used for the purpose of obtaining
the dispersion relation data, by using the Discrete Fourier
transform (DFT) [21].

II. PROBLEM DEFINITION

The proposed geometry for the problem is that of a nano-
stripe of permalloy (1000×50×1) nm3, shown in Fig. 1. By

Figure 1. The geometry of the nano stripe.

choosing a cuboid, we ensure that the FDM method, used in
OOMMF, does not introduce errors due to irregular edges.
• The length of the stripe was chosen to be long enough

to make the notion of dispersion, ω(k), meaningful and
to minimize edge effects.

• The width was chosen to make the possibility of standing
wave occurrence, in the cross-section, realistic.

• The thickness was chosen to be small enough to safely
assume that the dynamics are uniform along this direc-
tion.

Further specifications of the problem are given in Table I.
Parameter values chosen are typical for permalloy, with the
exception of the damping parameter α [22].

Parameter Value
Saturation Magnetization(Ms) 800 kA/m
Exchange Constant(A) 1.3×10−11J/m
Anisotropy Constant(K) 0
Gyromagnetic ratio(γ) 1.7×109 Hz/T
Damping coefficient(α) 0
DC bias field (H0) 804 kA/m

Table I
FIELDS AND CONSTANTS USED IN THE SIMULATION.

III. RESULTS AND DISCUSSIONS

In Fig. 2 we provide a schematic depiction of the different
SW excitation configurations.

1) In the backward volume (BV) wave configuration, the
external bias field (H0) is along the length of the stripe
and parallel to the wave vector (k).

Figure 2. Excitation geometry for (a) backward volume, (b) forward volume
and (c) surface spin waves.

2) In the forward volume (FV) wave configuration, H0 is
normal to the plane of the stripe with k being in the
plane of the stripe.

3) Surface waves are also forward volume waves, i.e. the
phase velocity (vp) and the group velocity (vg) are along
the same direction. Surface waves are excited when both
H0 and k are in the plane of the stripe, but are mutually
perpendicular to each other.

A comparison with Fig. 1 suggests that the BV configuration
is the most likely to be used in a magnonic device. However,
for reasons of completeness, we will also present simulation
results for the other two configurations.

A. Meshing

A few details about the statistics of the unit cell (in the
case of OOMMF) and the mesh used (in the case of Nmag)
are in order. A stringent condition to follow in the creation
of the meshes is that the maximum mesh element size should
not exceed the exchange length of the material. The exchange
length for permalloy is around 5 nm. This criterion is stressed
upon so that the effect of exchange interactions is kept
prominent.

Since OOMMF is a finite difference solver, it uses a regular
grid and we set the cell size to 1 nm×2 nm×2 nm, with the
shortest edge along the thickness of the waveguide. It was also
possible to simulate an extended stripe length by application
of a periodic boundary condition, with the help of an OOMMF
extension [23].

In the case of the Nmag, initially, the package NETGEN
[24] (which uses the advancing front method) was used to
create the mesh for the simulations. However, this did not
meet the criteria above. Instead, we used a mesh created
by decomposing the cuboidal body into cubes [20]. The
mesh generated had 65025 volume elements, 45184 surface
elements. The average mesh length was 2.21 nm while the
maximum mesh length was 2.52 nm.

B. Excitation

In order to excite SWs, an excitation pulse h (x, y, t) was
applied (along directions which differed according to the
direction of k for each of the three configurations). The
excitation was a sinc pulse, with the mathematical form :

h (x, y, t) = Γ
sin [kcx

′]

kcx′
sin [kcy

′]

kcy′
sin [2πfct

′]

2πfct′
. (1)

Defining x′ = x−x0, y′ = y−y0 and t′ = t−t0, the excitation
was offset by t0 = 50 ps and was applied at the center of the
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Figure 3. The applied excitation pulse, h (500×10−9, 50×10−9, t), starts
at t = 0, has a maximum at t = 50 ps and continues for the duration of the
simulation.

stripe at (x0,y0) = (500 nm, 25 nm). kc is the cut-off value
for the wave vector k, i.e., we excite waves with wave number
−kc < kx < kc. To obtain N = 250 points in the dispersion
curve, with L = 1µm, we choose

kc =
N

2
∆k =

N

2
× 2π

L
= 2π×0.1255×109 rad/m. (2)

Γ = 400 kA/m was the maximum amplitude of the excitation
and fc = 500 GHz was the cutoff frequency. A part of the
excitation, is shown in Fig. 3.

C. Simulation Methodology

We first calculate the lowest energy state in the presence of
an external bias field. The convergence criterion was set by a
tolerance value for ε,

max
{

1

MS

∣∣∣∣dMi

dt

∣∣∣∣}
i

≤ ε. (3)

Nmag uses the ordinary differential equation solver from
Sundials [25]. The simulation was run thrice, with ε being
progressively tightened, and the absolute and relative toler-
ances on the time step (δτ) were also reduced each time.
The values for (ε, δτ) used in the three simulations were
(1, 10−5), (0.1, 10−6) and (0.01, 10−7), with the output of
the first and second runs acting as input to the second and
third runs, respectively. This step-wise relaxation allowed us to
achieve faster convergence with an artificially inflated damping
parameter, α =1, without compromising the energy minimiza-
tion procedure. A more systematic approach is described in
[26].The hysteresis loop (shown in Fig. 4) of the stripe is
obtained by applying the external bias field along x̂ and ẑ,
the easy (in the plane) and hard (out of the plane) axis of the
stripe. This part of the simulation also allows us to

1) confirm that the chosen value of H0 = 804 kA/m is
greater than the hard axis saturation field, and

2) save m(x, y, z, t), at the end of the simulation. The
magnetization is saved cell-wise (for FDM) and site-
wise (for FEM) and is used as m(x, y, z, 0) for the
second simulation.

Figure 4. The hysteresis loop for the stripe, with the bias field applied along
the easy (x) and hard (z) directions.

Figure 5. Surface plot of mx, from (4), using data from an Nmag simulation.
The curves depict the dispersion relation for BV spin waves in the nanostripe.

In the second part of the simulation, both H0 and h (x, y, t)
are applied, α is set to zero and the simulation is allowed
to relax till 5 ns. The integration time step is computed
using a second order backward difference formula [25], and
m(x, y, z, t) was saved every pico-second. Setting α to zero
improved the quality of the dispersion curves.

To generate a dispersion curve, we must view a surface plot
of the magnetization components e.g. mx (kx, ω). We define

mx (kx, ω) = F2 [mx (x, y0, z0, t)−mx (x, y0, z0,0)] , (4)

where F2 is the two dimensional Fourier transform and y0 and
z0 are at the center of the stripe. The resulting surface plot,
from Nmag simulations, is shown in Fig. 5.

A useful analytic approximation for spin wave dispersion
was derived by Kalinikos [27]. For the lowest order modes,
the result (after taking exchange interactions into account) is
[28]

ω2 =


ωex.

(
ωex + ωM

1−e−kc

kc

)
BV

ωex.
(
ωex + ωM

(
1− 1−e−kc

kc

))
FV

ωex. (ωex + ωM) +
ω2

M
4

(
1− e−2kc

)
Surface

(5)

where
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Variables Typical value

λex = 2A
µ0M2

s
3.23×10−17 m2

ωM = γµ0Ms 2π×28.13 Grad/sec

Table II
VARIABLES COMMONLY USED IN ANALYTIC EQUATIONS.

Figure 6. The dispersion curves, for (a) backward volume, (b) surface wave,
and (c) forward volume configurations, obtained using OOMMF. The dots are
the dispersion relations from the analytic models.

ωex = ω0 + λexωMk
2, (6)

and

ω0 =

{
γµ0H0 BV and Surface
γµ0 (H0 −Ms) FV

. (7)

Note that λex has units of m2. The remaining variables are
defined in Table II. We assume that the demagnetization fields
are negligible for the BV and surface wave cases, while
Hdemag = −MS for the forward volume case.
Dynamic dipolar interactions can also influence the boundary
conditions in the stripe [29]. This results in a special quanti-
zation condition along y

ky = (ny + 1)
π

beff
, ny = 0,1,2, . . . (8)

for the different modes, where

beff = b
d

d− 2
, (9)

d =
2π

p
[
1 + 2 ln

(
1
p

)] , (10)

p =
c

b
, (11)

and k =
√
k2x + k2y . (8) has been derived under the assumption

that c� b i.e. p� 1. In our case p = 0.02.
The excitation signal in (1) is asymmetric about the y = y0

line passing through the centre of the stripe. To excite both

Figure 7. Optimal values of ω0 = 2π × 26.07Grad/sec and λexch =
2.96×10−17 m2 were obtained by fitting (5) (dotted line) to (13). Restricting
the fit to the region |kx| < 0.1 rad/nm yielded a fit with R2 = 0.9949.

even and odd modes, we modify the excitation to have the
form

h (x, y, t) = Γ
sin [kcx

′]

kcx′
sin [2πfct

′]

2πfct′

N∑
i=1

sin

[
iπy

ymax

]
, (12)

where ymax = 50 nm and N = 25. This time we use OOMMF
to generate the dispersion curves, shown in Fig. 6. The analytic
form of the first few modes, superimposed as dots, seems to
agree well with the quadratic form of the dispersion curves
from the simulations. For higher order modes we observe
that theory predicts a higher value for ω(kx → 0) compared
to what we see in the simulations. This difference is more
pronounced in the case of BV waves. A second observation is
that as k → kc, there is a larger discrepancy between analytic
and simulated values of ω(kx). This is due to the proximity
to the Brillouin boundary, along kx, and can be reduced by
reducing the micromagnetic cell size [30]. We also observe
reflections of the dispersion curves about f = fc, which appear
because we take the discrete Fourier transform on a finite
length time series. The use of a periodic boundary condition,
along the length, did not alter the the ω(kx) curves.

IV. BACKWARD VOLUME WAVES

The BV configuration is the most natural scheme for ex-
citation of SWs in a nano-stripe, as H0 ‖ k, and both are
along the length of the stripe. Hence, we use this configuration
to establish the validity of the dispersion relations obtained
from micromagnetic simulations vis-a-vis those obtained from
analytic approximations for a thin film geometry.

To facilitate a detailed comparison with analytic models we
extract the dispersion curve of the fundamental mode from the
surface plot and fit it to a polynomial (in rad/s):

ω(kx) = (5.54×10−6)k2
x + 2.36×1011, (13)

where kx is the wave vector along the length shown in Fig.
7. As kx → 0, ω →

√
ω0 (ω0 + ωM) ≈ 2π×37.6 Grad/sec,

demonstrating a reasonable agreement between the analytic
and simulation results for |kx| ≤ 0.1 rad/nm.



Pre
Prin

t

5

Figure 8. The dispersion curve exhibiting BV behavior, using Nmag, with
A = 2.515× 10−13 J/m.

It should be noted that (5) shows BV behaviour only for
small values of kx, where phase and group velocities have
opposite signs. For |kx| ≥ 2.8×106 rad/m the exchange
term (k2x) dominates the dipolar term. Increasing the length
of the stripe to 10µm would give us enough resolution in
kx to see BV behaviour, but would significantly increase the
computational complexity. Instead, we changed the value of A
to 2.515×10−13 J/m. Nmag simulations gave the dispersion
curve shown in Fig. 8 where a Hanning window function [31]

H (n) =
1
2

[
1− cos

(
2πn
N − 1

)]
, 0 ≤ n ≤ N − 1 (14)

with N = 5000 was applied to smoothen the plot. The
minimum is clearly visible at kx,min ≈ 4×108 rad/nm.

When the exchange interactions are comparable to the dipo-
lar interactions, we need to improve upon the approximations
made in the derivation of (5). The dispersion relation for the
BV configuration (with exchange interactions) is [32]

ω2 = ωex

(
ωex + ωM

k2y + k2z
k2x + k2y + k2z

)
, (15)

where, for the odd modes (here we are considering the first
mode), kz is solved for from the relation

kx = kz tan (kzc) (16)

and ky = 0. Using the value of the reduced exchange constant,
A = 2.515×10−13 J/m, we plot the analytic forms of (5)
and (15) in Fig. 9. (5) is also plotted with the additional
quantization in (8) for ny = 0. A comparison with Fig.
8 suggests that we still have finite size effects that are not
captured by the analytic approximations.

V. SUMMARY

As we begin designing magnonic waveguides, we must
also find ways of simulating spin wave propagation in these
nano-structures. The dispersion curves are integral to our
understanding of spin wave propagation. By defining a stan-
dard problem around a nano-stripe geometry, we facilitate a
comparison between different micromagnetic packages, and

Figure 9. BV dispersion curves, from (5) without including (8), (5) after
including (8), and (15). The first two coincide, except in the k → 0 limit.
Zero group velocity occurs at kx,min ≈1.3×108 rad/nm, 1.1×108 rad/nm and
2.5×108 rad/nm for the three cases, respectively.

also between finite difference and finite element solvers. This
would be a starting point, before embarking on studies to un-
derstand the influence of irregular shapes or edge deformities
on spin wave excitation and propagation.

We have shown reasonable agreement between ω(k) ob-
tained from micromagnetic simulations, and ω(k) obtained
from analytic approximations, for different configurations of
SWs. This is evident especially for the lower order modes.
The BV nature of the waves is exhibited only for small values
of k as the exchange term dominates for large k. The analytic
equations do not appear to accurately capture the dispersion
behaviour for large k. We have shown that it is possible
to obtain more resolution, in the region k → 0 without
increasing the length of the stripe, by altering the value of
the phenomenological exchange constant (A).

Micromagnetic simulations are sensitive to factors such as
the discretization in the geometry, the features of the excitation
pulse (temporal and spatial variation, maximum amplitude),
the damping constant, and post processing of the data [7], [26],
[31]. While we have tried to systematize these parameters,
we must still rely on practice and experience to obtain good
dispersion curves.
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