Sample paper for graduate admission test for EE7 - Control and Optimization stream

Department of Electrical Engineering
Indian Institute of Technology Madras, Chennai-36

April 21, 2021

1. In the following matrix, the equality $a+b=c+d$ holds.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(a) Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector?
(b) Find both the eigenvalues.
2. Verify if the following functions are differentiable.

- $|x|^{2}$
- $|x|^{3}$

3. Consider two matrices $A, B \in \mathbb{R}^{n \times n}$. Analyze if the following statement are true or false. If true give reasons/proof and if false give a counter example.

- The eigenvalues of $A+B$ is same as the sum of eigenvalues of A and B.
- The eigenvalues of $A B$ is same as the product of eigenvalues of A and B

In case any of your above answer was false, can you think of some special A and B for which the above condition is true.
4. The open-loop transfer function of a unity-feedback system is given by $G(s)=\frac{K}{s(\tau s+1)}, K, \tau>0$. By what factor should the gain K be reduced so that the peak overshoot for a unit-step response of the system is reduced from 75% to 25% ?
5. Let

$$
f(x)=\left\{\begin{array}{cl}
e^{-\frac{1}{x}} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

- Is $f(x)$ continuous at $x=0$?
- Is $f(x)$ differentiable at $x=0$?, if so, what is the derivative at $x=0$.

6. Check if all the roots of $s^{3}+7 s^{2}+25 s+39=0$ have real parts more negative than -1 .
7. The open-loop transfer function of a system is given by

$$
G(s)=\frac{K}{s(s+2)(s+4)}
$$

What is the value of K, which will lead to sustained oscillations in the closed-loop unity feedback system? Find the corresponding frequency of oscillation at that gain.
8. The impulse response of a system is $5 e^{-10 t} u(t)$, where $u(t)$ is the unit step function. Find its step-response?
9. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, find $A^{5}+A^{3}$.
10. A unity feedback system has open loop transfer function $G(s)=\frac{1}{s(3 s+1)(s+2)}$. Find the phase crossover and gain crossover frequencies.
11. Determine the transfer function from the frequency response plot shown in figure 1. Assume the system is minimum phase.

Figure 1: Magnitude plot of $G(j \omega) H(j \omega)$

