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Abstract—We address the problem of unconstrained face
recognition from remotely acquired images. The main factors
that make this problem challenging are image degradation due
to blur, and appearance variations due to illumination and
pose. In this paper we address the problems of blur and
illumination. We show that the set of all images obtained by
blurring a given image forms a convex set. Based on this set-
theoretic characterization, we propose a blur-robust algorithm
whose main step involves solving simple convex optimization
problems. We do not assume any parametric form for the
blur kernels, however, if this information is available it can be
easily incorporated into our algorithm. Further, using the low-
dimensional model for illumination variations, we show that the
set of all images obtained from a face image by blurring it and by
changing the illumination conditions forms a bi-convex set. Based
on this characterization we propose a blur and illumination-
robust algorithm. Our experiments on a challenging real dataset
obtained in uncontrolled settings illustrate the importance of
jointly modeling blur and illumination.

I. INTRODUCTION

FACE recognition has been an intensely researched field
of computer vision for the past couple of decades [1].

Though significant strides have been made in tackling the
problem in controlled domains (as in recognition of passport
photographs) [1], significant challenges remain in solving it
in the unconstrained domain. One such scenario occurs while
recognizing faces acquired from distant cameras. The main
factors that make this a challenging problem are image degra-
dations due to blur and noise, and variations in appearance due
to illumination and pose [2] (see Figure 1). In this paper, we
specifically address the problem of recognizing faces across
blur and illumination.

An obvious approach to recognizing blurred faces would
be to deblur the image first and then recognize it using tradi-
tional face recognition techniques [3]. However, this approach
involves solving the challenging problem of blind image
deconvolution [4], [5]. We avoid this unnecessary step and
propose a direct approach for face recognition. We show that
the set of all images obtained by blurring a given image forms
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Fig. 1: Face images captured by a distant camera in unconstrained
settings. The main challenges in recognizing such faces are variations
due to blur, pose and illumination. In this paper we specifically
address the problems of blur and illumination.

a convex set, and more specifically, we show that this set is the
convex hull of shifted versions of the original image. Thus with
each gallery image we can associate a corresponding convex
set. Based on this set-theoretic characterization, we propose
a blur-robust face recognition algorithm. In the basic version
of our algorithm, we compute the distance of a given probe
image (which we want to recognize) from each of the convex
sets, and assign it the identity of the closest gallery image.
The distance-computation steps are formulated as convex
optimization problems over the space of blur kernels. We do
not assume any parametric or symmetric form for the blur
kernels; however, if this information is available, it can be
easily incorporated into our algorithm, resulting in improved
recognition performance. Further, we make our algorithm
robust to outliers and small pixel mis-alignments by replacing
the Euclidean distance by weighted L1-norm distance and
comparing the images in the LBP (local binary pattern) [6]
space.

It has been shown in [7] and [8] that all the images of
a Lambertian convex object, under all possible illumination
conditions, lie on a low-dimensional (approximately nine-
dimensional) linear subspace. Though faces are not exactly
convex or Lambertian, they can be closely approximated by
one. Thus each face can be characterized by a low-dimensional
subspace, and this characterization has been used for designing
illumination robust face recognition algorithms [7], [9]. Based
on this illumination model, we show that the set of all images
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of a face under all blur and illumination variations is a bi-
convex one. That is- if we fix the blur kernel then the set of
images obtained by varying the illumination conditions forms
a convex set; and if we fix the illumination condition then the
set of all blurred images is also convex. Based on this set-
theoretic characterization, we propose a blur and illumination
robust face recognition algorithm. The basic version of our
algorithm computes the distance of a given probe image from
each of the bi-convex sets, and assigns it the identity of the
closest gallery image. The distance computations steps can be
formulated as ‘quadratically constrained quadratic programs’
(QCQPs), which we solve by alternately optimizing over the
blur kernels and the illumination coefficients. Similar to the
blur-only case, we make our algorithm robust to outliers and
small pixel mis-alignments by replacing the Euclidean norm
by the weighted L1-norm distance and comparing the images
in the LBP space.

To summarize, the main technical contributions of this paper
are:
• We show that the set of all images obtained by blurring

a given image forms a convex set. More specifically, we
show that this set is the convex hull of shifted versions
of the original image.

• Based on this set-theoretic characterization, we propose
a blur-robust face recognition algorithm, which avoids
solving the challenging and unnecessary problem of blind
image deconvolution.

• If we have additional information on the type of blur
affecting the probe image, we can easily incorporate
this knowledge into our algorithm, resulting in improved
recognition performance and speed.

• We show that the set of all images of a face under all
blur and illumination variations forms a bi-convex set.
Based on this characterization, we propose a blur and
illumination robust face recognition algorithm.

A. Related Work

Face recognition from blurred images can be classified into
four major approaches. In the first approach, the blurred image
is first deblurred and then used for recognition. This is the
approach taken in [10] and [3]. The drawback of this approach
is that we first need to solve the challenging problem of blind
image deconvolution. Though there have been many attempts
at solving the blind deconvolution problem [11], [4], [12], [13],
[5], it is an avoidable step for the face recognition problem.
Also, in [3] statistical models are learned for each blur kernel
type and amount; this step might become infeasible when we
try to capture the complete space of blur kernels.

In the second approach, blur invariant features are extracted
from the blurred image and then used for recognition; [14] and
[15] follow this approach. In [14], the local phase quantization
(LPQ) [16] method is used to extract blur invariant features.
Though this approach works very well for small blurs, it
is not very effective for large blurs [3]. In [15], a (blur)
subspace is associated with each image and face recognition
is performed in this feature space. It has been shown that the
(blur) subspace of an image contains all the blurred version of

the image. However, this analysis does not take into account
the convexity constraint that the blur kernels satisfy, and hence
the (blur) subspace will include many other images apart from
the blurred images. The third approach is the direct recognition
approach. This is the approach taken in [17] and by us. In [17],
artificially blurred versions of the gallery images are created
and the blurred probe image is matched to them. Again, it is
not possible to capture the whole space of blur kernels using
this method. We avoid this problem by optimizing over the
space of blur kernels. Finally, the fourth approach is to jointly
deblur and recognition the face image [18]. However, this
involves solving for the original sharp image, blur kernel and
identity of the face image, and hence it is a computationally
intensive approach.

Set theoretic approaches for signal and image restoration
have been considered in [19], [20], [21]. In these approaches
the desired signal space is defined as an intersection of closed
convex sets in a Hilbert space, with each set representing a
signal constraint. Image de-blurring has also been considered
in this context [20], where the non-negativity constraint of
the images has been used to restrict the solution space. We
differ from these approaches as our primary interest lies in
recognizing blurred and poorly illuminated faces rather than
restoring them.

There are mainly two approaches for recognizing faces
across illumination variation. One approach is based on the
low-dimensional linear subspace model [7], [8]. In this ap-
proach, each face is characterized by its corresponding low-
dimensional subspace. Given a probe image, its distance is
computed from each of the subspaces, and it is then assigned
to the face image with the smallest distance [7], [9]. The other
approach is based on extracting illumination insensitive fea-
tures from the face image and using them for matching. Many
features have been proposed for this purpose such as self-
quotient images [22], correleration filters [23], Eigenphases
method [24], image preprocessing algorithms [25], gradient
direction [26], [27] and albedo estimates [28].

The organization of the rest of the paper is as follows:
In section II we provide a set-theoretic characterization of
the space of blurred images and subsequently propose our
approach for recognizing blurred faces, in section III we
incorporate the illumination model in our approach and in
section IV we perform experiments to evaluate the efficacy
of our approach on many synthetic and real datasets.

II. DIRECT RECOGNITION OF BLURRED FACES (DRBF)

We first review the convolution model for blur. Next, we
show that the set of all images obtained by blurring a given
image is convex and finally we present our algorithm for
recognizing blurred faces.

A. Convolution Model for Blur

A pixel in a blurred image is a weighted average of the
pixel’s neighborhood in the original sharp image. Thus, blur
is modeled as a convolution operation between the original
image and a blur filter kernel which represents the weights
[29]. Let I be the original image and H be the blur kernel of
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size (2k + 1) × (2k + 1), then the blurred image Ib is given
by

Ib(r, c) = I ∗H(r, c) =

k∑
i=−k

k∑
j=−k

H(i, j)I(r− i, c− j) (1)

where ∗ represents the convolution operator and r, c are the
row and column indices of the image. Blur kernels also satisfy
the following properties- their coefficients are non-negative,
H ≥ 0, and sum up to 1 (i.e.

∑k
i=−k

∑k
j=−kH(i, j) = 1).

The blur kernel may possess additional structure depending
on the type of blur (such as circular-symmetry for out-of-
focus blurs), and these structures could be exploited during
recognition.

B. The Set of All Blurred Images

We want to characterize the set of all images obtained by
blurring a given image I . To do this we re-write (1) in a matrix-
vector form. Let h ∈ R(2k+1)2 be the vector obtained by
concatenating the columns of H , i.e., h = H(:) in MATLAB
notation, and similarly ib = Ib(:) ∈ RN be the representation
of Ib in the vector form, where N is the number of pixels in
the blurred image . Then we can write (1), along with the blur
kernel constraints, as

ib = Ah such that h ≥ 0, ‖h‖1 = 1 (2)

where A is a N × (2k + 1)2 matrix, obtained from I , with
each row of A representing the neighborhood pixel intensities
about the pixel indexed by the row. From 2, it is clear that the
set of all blurred images obtained from I is given by

B , {Ah|h ≥ 0, ‖h‖1 = 1} (3)

We have the following result about the set B.

Proposition II.1. The set of all images B obtained by blurring
an image I is a convex set. Moreover, this convex set is given
by the convex hull of the columns of matrix A, where the
columns of A are various shifted versions of I as determined
by the blur kernel.

Proof: Let i1 and i2 be elements from the set B. Then
there exists h1 and h2, with both satisfying the conditions
h ≥ 0 and ‖h‖1 = 1, such that i1 = Ah1 and i2 = Ah2. To
show that the set B is convex we need to show that for any λ
satisfying 0 ≤ λ ≤ 1, i3 = λi1 + (1 − λ)i2 is an element of
B. Now

i3 = λi1 + (1− λ)i2
= A(λh1 + (1− λ)h2)

= Ah3. (4)

Note that h3 satisfies both the non-negativity and sum condi-
tions and hence i3 is an element of B. Thus, B is a convex
set. B is defined as

{Ah|h ≥ 0, ‖h‖1 = 1}, (5)

which, by definition, is the convex hull of the columns of A.

Fig. 2: The set of all images obtained by blurring an image I is a
convex set. Moreover, this convex set is given by the convex hull of
the columns of the matrix A, which represents the various shifted
versions of I as determined by the blur kernel.

C. A Geometric Face Recognition algorithm

We first present the basic version of our blur-robust face
recognition algorithm. Let Ij , j = 1, 2, . . . ,M be the set of M
sharp gallery images. From the analysis above, every gallery
image Ij has an associated convex set of blurred images Bj .
Given the probe image Ib, we find its distance from the set
Bj , which is the minimum distance between Ib and the points
in the set Bj . This distance rj can be obtained by solving:

rj = min
h
||ib −Ajh||22 subject to h ≥ 0, ‖h‖1 = 1 (6)

This is a convex quadratic program which can be solved
efficiently. For ib ∈ RN and h ∈ RK , the computational com-
plexity is O(NK2). We compute rj for each j = 1, 2, . . . ,M
and assign Ib the identity of the gallery image with the
minimum rj . If there are multiple gallery images per class
(person), we can use the k-nearest neighbor rule, i.e. we
arrange the r′js in ascending order and find the class which
appears the most in the first k instances. In this algorithm we
can also incorporate additional information about the type of
blur. The most commonly occurring blur types are the out-
of-focus, motion and the atmospheric blurs [29]. The out-
of-focus and the atmospheric blurs are circularly-symmetric,
i.e. the coefficients of H at the same radius are equal;
whereas the motion blur is symmetric about the origin, i.e.
H(i, j) = H(−i,−j) [29]. Thus, having knowledge of the
blur type, we solve (6) with an additional constraint on the
blur kernel:

rj = min
h
||ib −Ajh||22

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0, (7)

where C(h) = 0 represents equality constraints on h. Imposing
these constraints reduces the number of parameters in the
optimization problem giving better recognition accuracy and
faster solutions.
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Algorithm Direct Recognition of Blurred Faces
Input: (Blurred) probe image Ib and a set of gallery images

Ij
Output: Identity of the probe image
1. For each gallery image Ij , find the optimal blur kernel

hj by solving either (9) or its robust version (10).
2. Blur each gallery image Ij with its corresponding hj and

extract LBP features.
3. Compare the LBP features of the probe image Ib with

those of the gallery images and find the closest match.

Fig. 3: Direct Recognition of Blurred Faces (DRBF/rDRBF) Algo-
rithm: Our proposed algorithm for recognizing blurred faces.

D. Making the Algorithm Robust to Outliers and Misalign-
ment

By making some minor modifications to the basic algorithm,
we can make it robust to outliers and small pixel misalign-
ments between the gallery and probe images. It is well known
in face recognition literature [30] that different regions in the
face have different amounts of information. To incorporate
this fact we divide the face image into different regions and
weigh them differently when computing the distance between
the probe image Ib and gallery sets Bj . That is, we modify
the distance functions rj as

rj = min
h
||W (ib −Ajh)||22

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0. (8)

We learn the weight W , a diagonal matrix, using a train-
ing dataset. The training procedure is described in the AP-
PENDIX.

Face recognition is also sensitive to small pixel mis-
alignments and, hence, the general consensus in face recogni-
tion literature is to extract alignment insensitive features, such
as Local Binary Patterns (LBP) [6], [14], and then perform
recognition based on these features. Following this convention,
instead of doing recognition directly from rj , we first compute
the optimal blur kernel hj for each gallery image by solving
(8), i.e.

hj = argmin
h
||W (ib −Ajh)||22

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0. (9)

We then blur each of the gallery images with the corresponding
optimal blur kernels hj and extract LBP features from the
blurred gallery images. And finally, we compare the LBP
features of the probe image with those of the gallery images
to find the closest match.

To make our algorithm robust to outliers, which could arise
due to variations in expression, we propose to replace the L2

norm in (9) by the L1 norm, i.e. we solve the problem:

hj = argmin
h
||W (ib −Ajh)||1

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0. (10)

Note that the above optimization problem is a convex L1-
norm problem, which we formulate and solve as a Linear
Programing (LP) problem. The computational complexity of
this problem is O((K + N)3). The overall algorithm is
summarized in Figure 3.

III. INCORPORATING THE ILLUMINATION MODEL

The facial images of a person under different illumination
conditions can look very different, and hence for any recog-
nition algorithm to work in practice, it must account for these
variations. First, we discuss the low-dimensional subspace
model for handling appearance variations due to illumination.
Next, we use this model along with the convolution model to
define the set of images of a face under all possible lighting
conditions and blur. We then propose a recognition algorithm
based on minimizing the distance of the probe image from
such sets.

A. The Low-Dimensional Linear Model for Illumination Vari-
ations

It has been shown in [7], [8] that when an object is convex
and Lambertian, the set of all images of the object under differ-
ent illumination conditions can be approximately represented
using a nine-dimensional subspace. Though the human face is
not exactly convex or Lambertian, it is often approximated as
one; and hence the nine-dimensional subspace model captures
its variations due to illumination quite well [31]. The nine-
dimensional linear subspace corresponding to a face image I
can be characterized by 9 basis images. In terms of these nine
basis images Im,m = 1, 2, . . . , 9, an image I of a person
under any illumination condition can be written as

I =

9∑
m=1

αmIm (11)

where αm,m = 1, 2, . . . , 9 are the corresponding linear coef-
ficients. To obtain these basis images, we use the “universal
configuration” of lighting positions proposed in [9]. These are
a set of 9 lighting positions sm,m = 1, 2, . . . , 9 such that
images taken under these lighting positions can serve as basis
images for the subspace. These basis images are generated
using the Lambertian reflectance model:

Im(r, c) = ρ(r, c)max(〈sm, n(r, c)〉, 0) (12)

where ρ(r, c) and n(r, c) are the albedo and surface-normal at
pixel location (r, c). We use the average 3-D face normals
from [32] for n and we approximate the albedo ρ with
a well-illuminated gallery image under diffuse lighting. In
the absence of a well-illuminated gallery image, we could
proceed by estimating the albedo from a poorly lit image using
approaches presented in [28],[33] and [34].

B. The set of all images under varying lighting and blur
For a given face characterized by the nine basis images

Im,m = 1, 2, . . . , 9, the set of images under all possible
lighting conditions and blur is given by

BI , {
9∑

m=1

αmAmh|h ≥ 0, ‖h‖1 = 1, C(h) = 0}, (13)
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Fig. 4: The set of all images under varying lighting and blur
for a single face image. This set is a bi-convex set, i.e. if we
fix either the filter kernel h or the illumination condition α, the
resulting subset is convex. Each hyperplane in the figure represents
the illumination subspace at different blur. For example, all points
on the bottom-most plane are obtained by fixing the blur kernel
at h(0) (the impulse function centered at 0, i.e. the no-blur case)
and varying the illumination conditions α. On this plane two data-
points (faces), corresponding to illumination conditions α′ and α′′,
are explicitly marked. Both these data points are associated with their
corresponding blur convex hulls, see figure 2.

Algorithm Illumination-robust Recognition of Blurred Faces
Input: (Blurred and poorly illuminated) probe image Ib and

a set of gallery images Ij
Output: Identity of the probe image
1. For each gallery image Ij , obtain the nine basis images

Ij,m,m = 1, 2, . . . , 9.
2. For each gallery image Ij , find the optimal blur kernel hj

and illumination coefficients αj,m by solving either (14)
or its robust version (15).

3. Transform (blur and re-illuminate) the gallery images Ij
using the computed hj and αj,m and extract LBP features.

4. Compare the LBP features of the probe image Ib with
those of the transformed gallery images and find the
closest match.

Fig. 5: Illumination-Robust Recognition of Blurred Faces
(IRBF/rIRBF) Algorithm: Our proposed algorithm for jointly
handling variations due to illumination and blur.

where the matrix Am is constructed from Im and represents
the pixel neighborhood structure. This set is not a convex set
though if we fix either the filter kernel h or the illumination
condition αm the set becomes convex, see figure 4.

C. Illumination-robust Recognition of Blurred Faces (IRBF)

Corresponding to each sharp well-lit gallery image Ij , j =
1, 2, . . . ,M , we obtain the nine basis images Ij,m,m =
1, 2, . . . , 9. Given the vectorized probe image ib, for each

gallery image Ij we find the optimal blur kernel hj and
illumination coefficients αj,m by solving:

[hj, αj,m] = arg min
h,αm

‖W (ib −
9∑

m=1

αmAj,mh)||22

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0. (14)

We then transform (blur and re-illuminate) each of the gallery
images Ij using the computed blur kernel hj and the illumi-
nation coefficients αj,m. Next, we compute the LBP features
from these transformed gallery images and compare it with
those from the probe image Ib to find the closest match, see
Figure 5. The major computational step of the algorithm is the
optimization problem of (14), which is a non-convex problem.
To solve this problem we use an alternation algorithm in
which we alternately minimize over h and αm, i.e. in one
step we minimize over h keeping αm fixed and in the other
step we minimize over αm keeping h fixed and we iterate
till convergence. Each step is now a convex problem: the
optimization over h for fixed αm reduces to the same problem
as (9) and the optimization of α given h is just a linear least
squares problem. The complexity of the overall alternation
algorithm is O(T (N + K3)) where T is the number of
iterations in the alternation step, and O(N) is the complexity
in the estimation of the illumination coefficients. We also
propose a robust version of the algorithm by replacing the
L2-norm in (14) with the L1-norm:

[hj, αj,m] = arg min
h,αm

‖W (ib −
9∑

m=1

αmAj,mh)||1

subject to h ≥ 0, ‖h‖1 = 1, C(h) = 0. (15)

Again, this is a non-convex problem and we use the alternation
procedure which reduces each step of the algorithm to a con-
vex L1-norm problem. We formulate these L1-norm problems
as Linear Programing (LP) problems. The complexity of the
overall alternation algorithm is O(T (N3 + (K +N)3)). The
algorithm is summarized in Figure 5.

IV. EXPERIMENTAL EVALUATIONS

We evaluate the proposed algorithms: the ‘blur-only’ formu-
lation DRBF of section II and the ‘blur and illumination’ for-
mulation IRBF of section III on synthetically blurred datasets-
FERET [35] and PIE [36], and a real dataset of remotely
acquired faces with significant blur and illumination variations
[2]- which we will refer to as the REMOTE dataset, see
Figure 1. In section IV-A, we evaluate the performance of
the DRBF algorithm in recognizing faces blurred by different
types and amounts of blur. In section IV-B, we evaluate the
effectiveness of the IRBF algorithm in recognizing blurred and
poorly illuminated faces. Finally, in section IV-A, we evaluate
our algorithms, DRBF and IRBF, on the real and challenging
dataset of REMOTE.

A. Face Recognition across Blur

To evaluate our algorithm DRBF on different types and
amounts of blur, we synthetically blur face images from the



6

FERET dataset with four different types of blurs: out-of-
focus, atmospheric, motion and general non-parametric blur.
We use Gaussian kernels of varying standard deviations to
approximate the out-of focus and atmospheric blurs [29], and
rectangular kernels with varying lengths and angles for the
motion blur. For the general blur we use the blur kernels
used in [5]. Figure 6 shows some of the blur kernels and
the corresponding blurred images. We compare our algorithm
with the FADEIN approach [3] and the LPQ approach [16]. As
discussed in section I-A, the FADEIN approach first infers the
deblurred image from the blurred probe image and then uses it
for face recognition. On the other hand in the LPQ (local phase
quantization) approach a blur insensitive image descriptor is
extracted from the blurred image and recognition is done
on this feature space. We also compare our algorithms with
‘FADEIN+LPQ’ [3], where LPQ features extracted from the
deblurred image produced by FADEIN is used for recognition.

(a) No
Blur

(b) σ =
8

(c)
M(25,90)

(d)
M(21,0)

(e)
M(9,45)

(f)
General-1

(g)
General-2

Fig. 6: Examples of blur kernels and images used to evaluate our
algorithms. The General blurs shown above have been borrowed from
[5]

1) Out-of-Focus and Atmospheric Blurs: We synthetically
generate face images from the FERET dataset using Gaussian
kernels of various standard deviations for evaluation. We use
the same experimental set-up as used in FADEIN [3], i.e.
we chose our gallery set as 1001 individuals from the fa
folder of the FERET dataset. The gallery set so constructed
has one face image per person and the images are frontal
and well-illuminated. We construct the probe set by blurring
images of the same set of 1001 individuals from the fb folder
of FERET (the images in this folder has slightly different
expressions from the fa folder). We blur each individual
image by Gaussian kernels of σ values 0, 2, 4, and 8 and kernel
size 4σ + 1.

To handle small variations in illumination, we histogram-
equalize all the images in the gallery and probe datasets. We
then perform recognition using the DRBF algorithm and its
robust (L1) version rDRBF, with the additional constraint of
circular symmetry imposed on the blur kernel. Figure 7 shows
the recognition results obtained using the above approach
along-side the recognition results from the FADEIN, LPQ
and FADEIN+LPQ algorithms. Our algorithms-DRBF and its
robust version rDRBF, show significant improvement over the
other algorithms, especially for large blurs. rDRBF performs
even better than DRBF owing to the more robust modeling of
expressions and misalignment, as shown in Figure 8

Fig. 7: Face recognition across Gaussian blur. Recognition results
by different algorithms as the amount of Gaussian blur is varied.
Our algorithms, DRBF and its robust (L1-norm) version rDRBF,
shows significant improvement over the algorithms FADEIN, LPQ
and FADEIN+LPQ, especially, for large blurs.

Fig. 8: Comparison of DRBF with its robust version rDBRF: The
robust version rDBRF can handle outliers, such as those due to
expression variations, more effectively. Two gallery images along
with their corresponding probes are shown in the center row. The
probes have been blurred by a Gaussian blur of σ = 4. Note that the
probe images have a different expression than the gallery images. The
blur kernels estimated by the two algorithms rDRBF and DRBF are
shown on the top and bottom rows respectively. As can be seen from
the figure, the kernels estimated by rDBRF is closer to the actual
kernel (at the center). The gallery images blurred by the estimated
kernels further illustrate this fact, as the blurred gallery on the bottom
row (corresponding to DBRF) looks significantly more blurred than
the blurred gallery images in the top row (corresponding to rDBRF).
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2) Motion and General Blurs: We now demonstrate the
effectiveness of our algorithms, DRBF and rDRBF, on datasets
degraded by motion and general non-parametric blurs. For this
experiment we use the ba and bj folders in FERET, both of
which contains 200 subjects with one image per subject. We
use the ba folder as the gallery set. The probe set is formed
by blurring the images in the bj folder by different motion
and general blur kernels, some of them are shown in Figure
6. When we perform recognition using DRBF and rDRBF, we
impose appropriate symmetry constraints for the blur types.
That is, when we solve for the motion blur case, we impose
the ‘symmetry about the origin’ constraint on the blur kernel,
whereas, when we solve for the general or non-parametric blur
case we do not impose any constraint. Figure 9 shows that
DRBF and rDRBF perform consistently better than LPQ and
FADEIN+LPQ. Hence, we can say that our method generalizes
well to all forms of blur.

(a)

Fig. 9: Recognition result for motion and general blurs: Performance
of different algorithms on some selected motion and non-parametric
blurs, see Figure 6. Our algorithms, DRBF and rDRBF, perform much
better than LPQ and FADEIN+LPQ, with the robust version rDRBF
always better than DRBF.

3) Effect of Blur Kernel-Size and Symmetry Constraints
On DRBF: In all the experiments described above we have
assumed that we know the type and size of the blur kernel, and
have used this information while estimating the blur kernel in
(9) or (10). For example, for images blurred by a Gaussian blur
of standard deviation σ, we impose a kernel-size of 4σ+1 and
circular symmetry. Though in some applications we may know
the type of blur or the amount of blur, it may not be known for
all applications. Hence, to test the sensitivity of our algorithm
to blur kernel-size and blur type (symmetry constraint), we
perform a few experiments.

We use the ba folder of FERET as the gallery set and we
create the probe set by blurring the images in the bj folder
by a Gaussian kernel of σ = 4 and size 4σ + 1 = 17. We
then perform recognition via DRBF with choices of kernel
size ranging from 1 to 32σ+1. We consider both the cases of
imposing the circular symmetry constraint and not imposing
any constraint. The experimental results are shown in Figure

Fig. 10: Effect of blur kernel size and symmetry constraints on DRBF.
For this experiment, we use probe images blurred by a Gaussian
kernel of σ = 4 and size 4σ + 1 = 17 and perform recognition
using DRBF with choices of kernel size ranging from 1 to 32σ+1.
When we impose appropriate symmetry constraints, the recognition
rate remains high even when we over-estimate the kernel size by
a large margin (we have also shown the estimated blur kernels).
This is because imposing symmetry constraints reduces the solution
space, and makes it a more regularized problem. On the other hand
when no symmetry constraints are imposed, the recognition rate falls
drastically after a certain kernel size. However, as long as we do not
over-estimate the kernel size by a large margin, we can expect a good
performance from the algorithm.

10. We can see that the recognition rates are fairly stable for
the case when we impose appropriate symmetry constraints.
This is because imposing symmetry constraints reduces the
solution space and makes it a more regularized problem. We
also show the mean estimated kernels, from which it is clear
that the algorithm works well even for large kernel sizes. On
the other hand when no symmetry constraints are imposed,
the recognition rate falls drastically after a certain kernel size.
However, as long as we do not over-estimate the kernel size by
a large margin, we can expect good results from the algorithm.
We conclude from these experiments that: 1) our algorithm
exhibits a stable performance for a wide range of kernel-sizes
as long as we do not over-estimate them by a large margin, 2)
it is better to under-estimate the kernel size than over-estimate
it and 3)if we know the blur type then we should impose the
corresponding symmetry constraints because imposing them
further relaxes the need for an accurate estimate of the kernel-
size.

B. Recognition across Blur and Illumination

We study the effectiveness of our algorithms in recognizing
blurred and poorly illuminated faces. We use the PIE dataset,
which consists of images of 68 individuals under different
illumination conditions. To study the effect of blur and il-
lumination together, we synthetically blur the images with
Gaussian kernels of varying σ’s. We use face images with
a frontal pose (c27) and good illumination (f21) as our gallery
and the rest of the images in c27 as probe. We further divide
the probe dataset into two categories- 1) Good Illumination
(GI) consisting of subsets f09, f11, f12 and f20 and 2) Bad
Illumination (BI) consisting of f13, f14, f15, f16, f17 and f22, see
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Kernel Size(σ) 0 0.5 1.0 1.5 2.0 2.5 3.0

Illumination GI BI GI BI GI BI GI BI GI BI GI BI GI BI

DRBF 99.63 95.10 99.63 84.55 99.63 78.67 99.63 77.95 99.63 77.45 97.79 58.58 95.58 42.40

IRBF 99.63 93.56 99.63 91.42 99.63 90.44 99.63 90.68 99.63 85.78 98.9 81.13 96.32 77.69

rIRBF 99.7 95.1 99.7 92.7 99.63 92.7 99.63 91.6 99.63 88.2 99.63 84.78 97.45 81.36

LPQ 99.63 99.1 99.63 97.79 99.63 96.08 99.63 88.97 97.05 73.04 79.42 58.08 46.32 27.7

FADEIN+LPQ 98.53 91.5 95.6 87.7 93.6 81.8 91.2 69.11 89.8 62.74 88.60 56.37 87.13 44.61

TABLE I: Recognition across Blur and Illumination on the PIE dataset. GI and BI represent the ‘good illumination’ and ‘bad illumination’
subsets of the probe-set. IRBF and its robust version rIRBF out-perform the other algorithms for blurs of sizes greater than σ = 1. LPQ
performs quite well for small blurs, but for large blurs its performance degrades significantly. This experiment clearly validates the need for
modeling illumination and blur in a principled manner.

(a) Good Illumi-
nation(GI)

(b) Bad Illumination (BI)(c) Illumination Basis
Images

Fig. 11: To study the effect of blur and illumination we use the PIE
dataset which shows significant variation due to illumination. For
each of the 68 subjects in PIE, we choose a well illuminated and
frontal image of the person as the gallery set. The probe set, which
is obtained from all the other frontal images, is divided into two
categories: 1) Good Illumination (GI) set and 2) Bad Illumination
(BI) set. Figures 11(a) and (b) shows some images from the GI and BI
sets respectively. Figure 11(c) shows the 9 illumination basis images
generated from a gallery image.

Figure 11. We then blur all the probe images with Gaussian
blurs of σ 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.

To perform recognition using our ‘blur and illumination’
algorithm IRBF, we first obtain the nine illumination basis
images for each gallery image as described in section III-A.
We impose the circular symmetry constraints while solving the
recognition problem using DRBF and IRBF. For comparison,
we use LPQ and a modified version of FADEIN+LPQ. Since
FADEIN does not model variations due to illumination, we
preprocess the intensity images with the self-quotient method
[22] and then run the algorithm. Table I shows the recognition
results for the algorithms. We see that our algorithms IRBF
and rIRBF out-perform the comparison algorithms for blurs
of sizes σ = 1.5 and greater. Moreover, with a 8-core 2.9GHz
procesor running MATLAB, it takes us 2.28s, 9.53s and
17.74s per query image with a blur of σ = 2, for a gallery
of 68 images for the DRBF, IRBF and rIRBF algorithms
respectively. Thus we can conclude that our algorithms are
able to maintain a consistent performance across increasing
blur in a reasonable amount of time.

As discussed is section III-C, the main optimization step in
the IRBF (14) and rIRBF (15) is a bi-convex problem, i.e. it
is convex w.r.t. to blur and illumination variables individually,
but it is not jointly convex. Thus, the global optimality of

Fig. 12: Convergence of the IRBF algorithm- Note that the IRBF
algorithm minimizes a bi-convex function which, in general, is a non-
convex problem. However, since we alternately optimize over the blur
kernel and illumination coefficients, we are guaranteed to converge to
a local minimum. The plot shows the average convergence behavior
of the algorithm. Based on this plot, we terminate the algorithm after
six iterations.

the solution is not guaranteed. However, since we alternately
optimize over the blur kernel and illumination coefficients,
we are guaranteed to converge to a local minimum. Figure 12
plots the average residual error of the cost function in (14)
with increasing number of iterations. Note that the algorithm
converges in a few iterations. Based on this plot, in our
experiments, we terminate the algorithm after six iterations.

C. Recognition in Unconstrained Settings

Finally, we report recognition experiments on the RE-
MOTE dataset where the images have been captured in an
unconstrained manner [2], [37]. The images were captured
in two settings: from ship-to-shore and from shore-to-ship.
The distance between the camera and the subjects ranges
from 5meters to 250 meters. Hence, the images suffer from
varying amounts of blur, variations in illumination and pose,
and even some occlusion. This dataset has 17 subjects. We
design our gallery set to have one frontal, sharp and well-
illuminated image. The probe is manually partitioned into
three categories: 1) the illum folder containing 561 images
with illumination variations as the main problem, 2) the blur
folder containing 75 images with blur as the main problem
and 3) the illum-blur folder containing 128 images with both
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(a) Sample Images (b) Basis Images

Fig. 13: Examples from the REMOTE dataset showing three probe
partitions in subplot (a). The top row shows images from the Illum
folder where variations in illumination are the only problem. The
middle and bottom rows have images which exhibit variations in blur
alone (from the Blur folder), and variations in blur and illumination
(from the Illum-Blur folder) respectively. Subplot (b) shows the basis
images generated from a gallery.

problems, see Figure 13(a). All three subsets contain near-
frontal images of the 17 subjects, as set in the protocol in [37].
We register the images as a pre-processing step and normalize
the size of the images to 120 × 120 pixels. We then run
our algorithms-DRBF and IRBF, on the dataset. We assume
symmetry about the origin as most of the blur arises due to out-
of-focus, atmospheric and motion blur, all of which satisfy this
symmetry constraint. For the illum folder we assume a blur
kernel size of 5, and for the other two folders we assume
kernel size of 7. For the IRBF and rIRBF algorithms, we
generate the 9 illumination basis images for each image in
the gallery, see Figure 13(b). We compare our algorithm with
LPQ, modified FADEIN+LPQ (as described in the previous
section IV-B). Apart from these algorithms, we also compare
our algorithms with the algorithms presented in [37]. These
algorithms are- sparse representation based face recognition
algorithm [38] (SRC), PCA+LDA+SVM [2] and a PLS-based
(Partial least squares) face recognition algorithm [37]. The
results are shown in Figure 14. The good performances by
rIRBF and IRBF further confirms the importance of jointly
modeling blur and illumination variations.

V. CONCLUSION AND DISCUSSION

Motivated by the problem of remote face recognition, we
have addressed the problem of recognizing blurred and poorly-
illuminated faces. We have shown that the set of all images
obtained by blurring a given image is a convex set given by
the convex hull of shifted versions of the image. Based on
this set-theoretic characterization, we proposed a blur-robust
face recognition algorithm DRBF. In this algorithm we can
easily incorporate prior knowledge on the type of blur as
constraints. Using the low-dimensional linear subspace model
for illumination, we then showed that the set of all images
obtained from a given image by blurring and changing its
illumination conditions is a bi-convex set. Again, based on
this set-theoretic characterization, we proposed a blur and
illumination robust algorithm IRBF. We also demonstrated the
efficacy of our algorithms in tackling the challenging problem

Fig. 14: Recognition results on the unconstrained dataset REMOTE.
We compare our algorithms, DRBF and IRBF, with LPQ, modified
FADEIN+LPQ, a sparse representation-based face recognition algo-
rithm [38] (SRC), PCA+LDA+SVM [2] and a PLS-based (Partial
least squares) face recognition algorithm [37]. The good performance
by rIRBF and IRBF further confirms the importance of jointly
modeling blur and illumination variations.

of face recognition in uncontrolled settings.
Our algorithm is based on a generative model followed by

nearest-neighbor classification between the query image and
the gallery space, which makes it difficult to scale it to real-
life datasets with millions of images. This is a common issue
with most algorithms based on generative models. Broadly
speaking, only classifier-based methods have been shown to
scale well to very large datasets; this is because the size of
the gallery largely affects the training stage, the testing stage
remains relatively fast. Hence we believe that incorporating
a discriminative-learning based approach like SVM into this
formulation would be a very promising direction for future
work. We would also like to model pose-variation under the
same framework.

APPENDIX
THE USE OF WEIGHTS IN DRBF AND IRBF

In the algorithms proposed above, we use the weight-matrix
W to make them robust to outliers due to non-rigid variability
(like facial expressions) and misalignment. They also help
reduce the importance of pixels in the low-frequency regions
of the face in the kernel-estimation step. This is desirable as
the effects of blur are not really perceivable in these regions.

To train the weights, we used a method similar to the one
used in [39]. We used the ’ba’ and ’bj’ folders of FERET as
gallery and probe, respectively. We blurred the query with a
Gaussian kernel of σ = 4 and partitioned the face images into
patches as shown in 15(a). We then used DRBF/rDRBF to
get the recognition rate for each patch independently. Finally
the weights were assigned to each patch proportional to the
recognition rate observed. 15(b) shows the weights obtained
by this method for DRBF. These weights were then used for all
3 datasets, namely FERET(’fa’ and ’fb’), PIE and REMOTE.
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(a) Image Patches (b) W

Fig. 15: The use of weights in DRBF and IRBF: The weights have
been trained on the ’ba’ and ’bj’ folders of FERET to allow for
different regions of the face to contribute differently to the overall
cost function. This enables us to give low weights to regions of the
face that show high variability like the ears and the mouth. The trained
weights are shown in Figure15(b), with white representing the most
weight.

This can be verified from Figure 15(b), where the weights
obtained for the outer regions of the face(hair, ears, neck etc)
and the mouth are very small; as these regions are more prone
to show non-rigid variability. The weights for the regions with
the cheeks are also relatively small, validating our hypothesis
that less textured (low-frequency) regions of the face should
contribute less towards the estimation problem. Lastly, regions
around the eyes are weighed the most which re-affirms the
common understanding that they are the more distinguishable
features of the human face.
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