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Abstract—Regression in the presence of outliers is an in-
herently combinatorial problem. However, compressive sensing
theory suggests that certain combinatorial optimization problems
can be exactly solved using polynomial-time algorithms. Moti-
vated by this connection, several research groups have proposed
polynomial-time algorithms for robust regression. In this paper
we specifically address the traditional robust regression problem,
where the number of observations is more than the number
of unknown regression parameters and the structure of the
regressor matrix is defined by the training dataset (hence, it
may not satisfy properties such as Restricted Isometry Property
or incoherence. We derive the precise conditions under which
the sparse regularization (l0 and l1-norm) approaches solve the
robust regression problem. We show that the smallest principal
angle between the regressor subspace and all k-dimensional
outlier subspaces is the fundamental quantity that determines
the performance of these algorithms. In terms of this angle
we provide an estimate of the number of outliers the sparse
regularization based approaches can handle. We then empirically
evaluate the sparse (l1-norm) regularization approach against
other traditional robust regression algorithms to identify accurate
and efficient algorithms for high-dimensional regression prob-
lems.

Index Terms—Robust regression, Sparse representation, Com-
pressive sensing.

I. INTRODUCTION

The goal of regression is to infer a functional relation-
ship between two sets of variables from a given training
data set. Many times the functional form is already known
and the parameters of the function are estimated from the
training data set. In most of the training data sets, there
are some data points which differ markedly from the rest
of the data; these are known as outliers. The goal of robust
regression techniques is to properly account for the outliers
while estimating the model parameters. Since any subset of
the data could be outliers, robust regression is in general a
combinatorial problem and robust algorithms such as least
median squares (LMedS) [19] and random sample consensus
(RANSAC) [10] inherit this combinatorial nature. However,
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compressive sensing theory[3], [7] has shown that certain com-
binatorial optimization problems (sparse solution of certain
under-determined linear equations) can be exactly solved using
polynomial-time algorithms. Motivated by this connection,
several research groups [4], [13], [14], [24], [23], including
our group [18], have suggested variations of this theme to
design polynomial-time algorithms for robust regression. In
this paper, we derive the precise conditions under which the
sparse regularization (l0 and l1-norm) based approaches can
solve the robust regression problem correctly.

We address the traditional robust regression problem where
the number of observations N is larger than the number of
unknown regression parameters D. As is now the standard
practice for handling outliers, we express the regression error
as a sum of two error terms: a sparse outlier error term and
a dense inlier (small) error term [1], [18], [13], [14], [24],
[23]. Under the reasonable assumption that there are fewer
outliers than inliers in a training dataset, the robust regression
problem can be formulated as a l0 regularization problem. We
state the conditions under which the l0 regularization approach
will correctly estimate the regression parameters. We show
that a quantity θk, defined as the smallest principal angle
between the regressor subspace and all k-dimensional outlier
subspaces, is the fundamental quantity that determines the
performance of this approach. More specifically we show that
if the regressor matrix is full column rank and θ2k > 0, then
the l0 regularization approach can handle k outliers. Since, the
l0 regularization problem is a combinatorial problem, we relax
it to a l1-norm regularized problem. We then show that if the
regressor matrix is full column rank and θ2k > cos−1(2/3),
then the l1-norm regularization approach can handle k outliers.
For a summary of our main results, see Figure 1. We also
study the theoretical computational complexity and empirically
performance of various robust regression algorithms to identify
algorithms that are efficient for solving high-dimensional
regression problems.

A. Contributions

The technical contributions of this paper are as follows:

• We state the sufficient conditions for the sparse regu-
larization (l0 and l1-norm) approaches to correctly solve
the traditional robust regression problem.We show that
a quantity θk, which measures the angular separation
between the regressor subspace and all k-dimensional
outlier subspaces, is the fundamental quantity that de-
termines the performance of these algorithms.
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Fig. 1: The main contribution of this paper is to state the sufficient conditions under which the sparse regularization (l0 and
l1-norm) approaches correctly solve the robust regression problem.

• Our Proposition II.1 and Theorem II.1 gives an estimate
on the number of outliers the sparse regularization ap-
proaches can handle.

• We empirically compare the sparse (l1-norm) regular-
ization approach with the traditional robust algorithms
to identify accurate and efficient algorithms for solving
high-dimensional problems.

B. Prior Work
Various robust regression approaches have been proposed

in the statistics and signal processing literature. We mention
some of the major classes of approaches such as LMedS,
RANSAC and M-estimators. In LMedS [19], the median of
the squared residues is minimized using a random sampling
algorithm. This sampling algorithm is combinatorial in the
dimension (number of regression parameters) of the problem,
which makes LMedS impractical for solving high-dimensional
regression problems. RANSAC [10] and its improvements
such as MSAC, MLESAC [26] are the most widely used robust
approaches in computer vision [22]. RANSAC estimates the
model parameters by minimizing the number of outliers, which
are defined as data points that have residual greater than a
pre-defined threshold. The same random sampling algorithm
(as used in LMedS) is used for solving this problem, which
makes RANSAC, MSAC and MLESAC impractical for high-
dimension problems.

Another popular class of robust approaches is the M-
estimates [12]. M-estimates are a generalization of the max-
imum likelihood estimates (MLEs), where the negative log
likelihood function of the data is replaced by a robust cost
function. Many of these robust cost functions are non-convex.
Generally a polynomial time algorithm iteratively reweighted
least squares (IRLS) is used for solving the optimization prob-
lem, which often converges to a local minimum. Many other
robust approaches have been proposed such as S-estimates
[21], L-estimates [20] and MM-estimates [28], but all of them
are solved using a (combinatorial) random sampling algorithm,
and hence are not attractive for solving high-dimensional
problems [17].

A similar mathematical formulation (as robust regression)
arises in the context of error-correcting codes over the reals
[4], [1]. The decoding schemes for this formulation are very
similar to robust regression algorithms. The decoding scheme
used in [4] is the l1-regression. It was shown that if a certain
orthogonal matrix, related to the encoding matrix, satisfies the
Restricted Isometry Property (RIP) and the gross error vector
is sufficiently sparse, then the message can be successfully
recovered. In [1], this error-correcting scheme was further
extended to the case where the channel could introduce (dense)
small errors along with sparse gross errors. However, the
robust regression problem is different from the error-correction
problem in the sense that in error-correction one is free to
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design the encoding matrix, whereas in robust regression the
training dataset dictates the structure of the regressor matrix
(which plays a similar role as the encoding matrix). Also, the
conditions that we provide are more appropriate in the context
of robust regression and are tighter than that provided in [1].

Recently, many algorithms have been proposed to handle
outliers in the compressive sensing framework [14], [5]. Our
framework is different from them since we consider the
traditional regression problem, where there are more obser-
vations (data points) than the unknown model parameters
and we do not have the freedom to design the regressor
matrix. As an alternative to sparse regularization based robust
regression approaches, a Bayesian approach has been proposed
in [18], [13]. In this approach, a sparse prior [25] is assumed
on the outliers and the resulting problem is solved using
the maximum a-posterior (MAP) criterion. Another strain of
related results studies the recovery and separation of sparsely
corrupted signal [24], [23]. These results, however, rely on
the coherence parameters of the regressor and outlier matrices,
rather than on the principle angle between them.

C. Outline of the Paper

The remainder of the paper is organized as follows: in
Section II we formulate the robust regression problem as a
l0 regularization problem and its relaxed convex version, a
l1-norm regularization problem, and state conditions under
which the proposed optimization problems solves the robust
regression problem. In Section III we prove our main result
and in Section IV we perform several empirical experiments
to compare various robust approaches.

II. ROBUST REGRESSION BASED ON SPARSE
REGULARIZATION

Regression is the problem of estimating the functional
relation f between two sets of variables: independent variable
(or regressor) x ∈ RD, and dependent variable (or regressand)
y ∈ R, given many training pairs (yi, xi), i = 1, 2 . . . , N . In
linear regression, the function f is a linear function of the
vector of model parameters w ∈ RD:

yi = xTi w + e, (1)

where e is the observation noise. We wish to estimate w from
the given training dataset of N observations. We can write all
the observation equations collectively as:

y = Xw + e, (2)

where y = (y1, . . . , yN )T , X = [x1, . . . , xN ]T ∈ RN×D (the
regressor matrix) and e = (e1, . . . , eN )T . In this paper we
consider the traditional regression framework, where there are
more observations than the unknown model parameters, i.e.,
N > D. The most popular estimator of w is the least squares
(LS) estimate, which is statistically optimal (in the maximum
likelihood sense) for the case when the noise is i.i.d Gaussian.
However, in the presence of outliers or gross error, the noise
distribution is far from Gaussian and, hence, LS gives poor
estimates of w.

A. Robust Regression as a l0 Regularization Problem

As is now a standard practice for handling outliers, we
express the noise variable e as sum of two independent
components, e = s+ n, where s represents the sparse outlier
noise and n represents the dense inlier noise [1], [18], [13],
[14], [23]. With this the robust linear regression model is given
by:

y = Xw + s+ n. (3)

This is an ill-posed problem as there are more unknowns, w
and s, than equations and hence there are infinitely many so-
lutions. Clearly, we need to restrict the solution space in order
to find a unique solution. A reasonable assumption/restriction
could be that outliers are sparse in a training dataset, i.e., there
are fewer outliers than inliers in a dataset. Under this sparse
outliers assumption, the appropriate optimization problem to
solve would be:

min
s,w
‖s‖0 such that ||y −Xw − s||2 ≤ ε, (4)

where ‖s‖0 is the number of non-zero elements in s and ε is a
measure of the magnitude of the small noise n. Before looking
at the case where both outliers and small noise is present, we
first treat the case where only outliers are present, i.e., n = 0.

When n = 0, we should solve:

min
s,w
‖s‖0 such that y = Xw + s. (5)

Note that the above problem can be rewritten as minw ‖y −
Xw‖0, and hence can be termed the l0 regression problem.
We are interested in answering the following question: Under
what conditions, by solving the above equation, can we recover
the original w from the observation y? One obvious condition
is that X should be a full column rank matrix (remember
N ≥ D), otherwise, even when there are no outliers, we will
not be able to recover the original w. To discover the other
conditions, we rewrite the constraint in (5) as

y = [X I]ws, (6)

where I is a N × N identity matrix and ws = [w; s]1 is the
augmented vector of unknowns. Now, consider a particular
dataset (y,X) where amongst the N data points, characterized
by the index set J = [1, 2, . . . , N ], k of them are affected by
outliers. Let these k outlier affected data points be specified
by the subset T ⊂ J . Then, equation (6) can be written as

y = [X IT ]wsT , (7)

where IT is a matrix consisting of column vectors from I
indexed by T , sT ∈ Rk represents the k non-zero outlier
noise and wsT = [w; sT ]. Given the information about the
index subset T , i.e. given which data (indices) are affected
by outliers, we can recover w and the non-zero outliers sT
from (7) if and only if [X IT ] is full column rank. The
condition for [X IT ] to be full rank can also be expressed
in terms of the smallest principal angle between the subspace
spanned by the regressor, span(X), and the subspace spanned

1Throughout this paper, we will use the MATLAB notation [w; s] to mean
[wT sT ]T
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by outliers, span(IT ). The smallest principle angle θ between
two subspaces U andW of RN is defined as the smallest angle
between a vector in U and a vector in W [11]:

cos(θ) = max
u∈U

max
w∈W

|uTw|
‖u‖2‖w‖2

. (8)

Let θT denote the smallest principal angle between the sub-
spaces span(X) and span(IT ), then for any vectors u ∈
span(X) and w ∈ span(IT ):

|uTw| ≤ δT ‖u‖2‖w‖2, (9)

where δT = cos(θT ) is the smallest such number. We then
generalize the definition of the smallest principal angle θT to
a new quantity θk:

θk = min
|T |≤k

θT , k = 1, 2, . . . , N, (10)

i.e., θk is the smallest principal angle between the regression
subspace and all the k-dimensional outlier subspaces. δk =
cos(θk) 2 is then the smallest number such that for any vectors
u ∈ span(X) and w ∈ span(IT ) with |T | ≤ k:

|uTw| ≤ δk‖u‖2‖w‖2. (11)

The quantity δk ∈ [0, 1] (or equivalently θk ∈ [0◦, 90◦]) is a
measure of how well separated the regressor subspace is from
the all the k-dimensional outlier subspaces. When δk = 1
(or equivalently θk = 0◦), the regressor subspace and one of
the k dimensional outlier subspaces, share at least a common
vector, whereas, when δk = 0 (or equivalently θk = 90◦),
the regressor subspace is orthogonal to all the k-dimensional
outlier subspaces. With the definition of δk, we are now in a
position to state the sufficient conditions for recovering w by
solving the l0 regression problem (5).

Proposition II.1. Assume that δ2k < 1 (or equivalently θ2k >
0), X is a full column rank matrix and y = Xw + s. Then,
by solving the l0 regression problem (5), we can estimate w
without any error if ‖s‖0 ≤ k (i.e., if there are at most k
outliers in the y variable).

Proof: The conditions δ2k < 1 and X a full rank matrix
together implies that all matrices of the form [X IT ] with
|T | ≤ 2k are full rank. This fact can be proved by the principle
of contradiction.

Now, suppose w0 and s0 with ‖s0‖0 ≤ k satisfy the
equation

y = Xw + s. (12)

Then to show that we can recover w0 and s0 by solving (5),
it is sufficient to show that there exists no other w and s,
with ‖s‖0 ≤ k, which also satisfy (12). We show this by
contradiction: Suppose there is another such pair, say w1 and
s1 with ‖s1‖0 ≤ k, which also satisfies (12). Then Xw0+s0 =
Xw1 + s1. Re-arranging, we have:

[X I]∆ws = 0 (13)

where ∆ws = [∆w; ∆s], ∆w = (w0 − w1) and ∆s = (s0 −
s1). Since ‖s0‖0 ≤ k and ‖s1‖0 ≤ k, ||∆s||0 ≤ 2k. If T∆

2δk is related to the restricted orthogonality constant defined in [4]

denotes the corresponding non-zero index set, then T∆ has a
cardinality of at most 2k and, thus, [X IT∆ ] is a full rank
matrix. This in turn implies that ∆ws = 0, i.e. w0 = w1 and
s0 = s1.

From the above result, we can find a lower bound on the
maximum number of outliers (in the y variable) that the l0
regression (5) can handle in a dataset characterized by the
regressor matrix X . This is given by the largest integer k such
that δ2k < 1.

B. Robust Regression as a l1-norm Regularization Problem

The l0 regularization problem (5) is a hard combinatorial
problem to solve. So, we approximate it by the following
convex problem:

min
s,w
‖s‖1 such that y = Xw + s (14)

where the ‖s‖0 term is replaced by the l1 norm of s. Note
that the above problem can be re-written as minw ‖y−Xw‖1,
and hence this is the l1 regression problem. Again, we are
interested in the question: Under what conditions, by solving
the l1 regression problem (14), can we recover the original
w? Not surprisingly, the answer is that we need a bigger
angular separation between the regressor subspace and the
outlier subspaces.

Fact II.1. Assume that δ2k < 2
3 (or equivalently θ2k >

cos−1(2/3)), X is a full column rank matrix and y = Xw+s.
Then, by solving the the l1 regression problem (14), we can
estimate w without any error if ‖s‖0 ≤ k (i.e., if there are at
most k outliers in the y variable).

Proof: Proved as a special case of the main Theorem II.1.

Similar to the l0 regression case, we can also obtain a
lower bound on the maximum number of outliers that the l1
regression can handle in the y variable; this is given by the
largest integer k for which δ2k < 2

3 .
Next, we consider the case where the observations yi are

corrupted by gross as well as small noise. In the presence
of small bounded noise ‖n‖2 ≤ ε, we propose to solve the
following convex relaxation of the combinatorial problem (4)

min
s,w
||s||1 such that y = Xw + s+ n, ‖n‖2 ≤ ε. (15)

The above problem is a related to the basis pursuit denoising
problem (BPDN) [6] and we will refer to it as basis pursuit
robust regression (BPRR). Under the same conditions on the
angular separation between the regressor subspace and the
outliers subspaces, we have the following result.

Theorem II.1. Assume that δ2k < 2
3 (or equivalently θ2k >

cos−1(2/3)), X is a full column rank matrix and y = Xw+s+
n with ‖n‖2 ≤ ε. Then the error in the estimation of w, ∆w,
by BPRR (15) is related to sk, the best k-sparse approximation
of s, and ε as:

‖∆w‖2 ≤ τ−1(C0k
− 1

2 ‖s− sk‖1 + C1ε), (16)
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where τ is the smallest singular value of X , and C0, C1 are
constants which depend only on δ2k (C0 = 2δ2k

1− 3
2 δ2k

, C1 =

2
√

1+δ2k
1− 3

2 δ2k
).

Note that if there are at most k outliers, sk = s and the
estimation error ‖∆w‖2 is bounded by a constant times ε.
Furthermore, in the absence of small noise (ε = 0), we can
recover w without any error, which is the claim of Fact II.1.
We prove our main Theorem II.1 in the next Section.

III. PROOF OF THE MAIN THEOREM II.1

The main assumption of the Theorem is in terms of
the smallest principal angle between the regressor subspace,
span(X), and the outlier subspaces, span(IT ). This angle is
best expressed in terms of orthonormal bases of the subspaces.
IT is already an orthonormal basis, but the same can not
be said about X . Hence we first ortho-normalize X by the
reduced QR decomposition, i.e. X = QR where Q is an N×D
matrix which forms an orthonormal basis for X and R is an
D ×D upper triangular matrix. Since X is assumed to be a
full column rank matrix, R is a full rank matrix. Using this
decomposition of X , we can solve (15) in an alternative way.
First, we can substitute z = Rw and solve for z from:

min
s,z
||s||1 such that ||y −Qz − s||2 ≤ ε. (17)

We can then obtain w from w = R−1z. This way of solving for
w is exactly equivalent to that of (15), and hence for solving
practical problems any of the two approaches can be used.
However, the proof of the Theorem is based on this alternative
approach. We first obtain an estimation error bound on z and
then use w = R−1z to obtain a bound on w.

For the main proof we will need some more results. One
of the results is on the relation between δk and a quantity
µk, defined below, which is very similar to the concept of
restricted isometry constant [4].

Definition III.1. For orthonormal matrix Q, we define a
constant µk, k = 1, 2, . . . , N as the smallest number such that

(1− µk)‖x‖22 ≤ ‖[Q IT ]x‖22 ≤ (1 + µk)‖x‖22 (18)

for all T with cardinality at most k.

Lemma III.1. For orthonormal regressor matrix Q, δk =
µk, k = 1, 2, . . . , N .

Proof: From definition of δk, for any IT (with |T | ≤ k),
z and s ∈ Rk:

|〈Qz, IT s〉| ≤ δk‖z‖2‖s‖2 (19)

where we have used ‖Qz‖2 = ‖z‖2 and ‖IT s‖2 = ‖s‖2
since Q and IT are orthonormal matrices. Writing x = [z; s],
‖[Q IT ]x‖22 is given by

‖[Q IT ]x‖22 = ‖z‖22 + ‖s‖22 + 2〈Qz, IT s〉
≤ ‖z‖22 + ‖s‖22 + 2δk‖z‖2‖s‖2 (20)

Note that, from the definition of δk, the above inequality is
tight, i.e., there exists z and s for which the inequality is

satisfied with an equality. Using the fact 2‖z‖2‖s‖2 ≤ ‖z‖22 +
‖s‖22 we get

‖[Q IT ]x‖22 ≤ ‖z‖22 + ‖s‖22 + δk(‖z‖22 + ‖s‖22). (21)

Further, using the fact ‖x‖22 = ‖z‖22 + ‖s‖22, we get
‖[Q IT ]x‖22 ≤ (1+δk)‖x‖22. Using the inequality 〈Qz, IT s〉 ≥
−δk‖z‖2‖s‖2, it is easy to show that ‖[QIT ]x‖22 ≥ (1 −
δk)‖x‖22. Thus, we have

(1− δk)‖x‖22 ≤ ‖[Q IT ]x‖22 ≤ (1 + δk)‖x‖22, (22)

which implies δk ≥ µk. However, there exists x = [z; s] which
satisfies both the inequalities (20) and (21) with equality and
hence δk = µk.

The proof of the main Theorem parallels that in [2]. Suppose
for a given (y,X), (z,s) satisfy y = Qz+s+n with ‖n‖2 ≤ ε.
And let z∗ and s∗ be the solution of (17) for this (y,X). Then

‖Q(z−z∗)+(s−s∗)‖2 ≤ ‖Qz+s−y‖2+‖y−Qz∗−s∗‖2 ≤ 2ε
(23)

This follows from the triangle inequality and the fact that both
(z, s) and (z∗, s∗) are feasible for problem (17). Let ∆z =
z∗ − z and h = s∗ − s. For the rest of the proof, we use the
following notation: vector xT is equal to x on the index set T
and zero elsewhere 3. Now, let’s decompose h as h = hT0 +
hT1 +hT2 +. . . , where each of the index set Ti, i = 0, 1, 2, . . . ,
is of cardinality k except for the last index set which can be of
lesser cardinality. The index T0 corresponds to the locations
of k largest coefficients of s, T1 to the locations of k largest
coefficients of hT c

0
, T2 to that of the next largest k coefficients

of hT c
0

and so on. In the main proof, we will need a bound
on the quantity

∑
j≥2 ‖hTj‖2, which we obtain first. We use

the following results from [2]:∑
j≥2

‖hTj
‖2 ≤ k−

1
2 ‖hT c

0
‖1 (24)

and
‖hT c

0
‖1 ≤ ‖hT0‖1 + 2‖sT c

0
‖1. (25)

These results correspond to equations (10) and (12) in [2],
with some changes in notations. The first result holds because
of the way h has been decomposed into hT0 , hT1 , hT2 , . . . , and
the second result is based on ‖s + h‖1 ≤ ‖s‖1, which holds
because s+ h = s∗ is the minimum l1-norm solution of (17).
Based on the above two equations, we have∑

j≥2

‖hTj
‖2 ≤ k−

1
2 ‖hT0

‖1 + 2k−
1
2 ‖sT c

0
‖1

≤ ‖hT0‖2 + 2e0, (26)

where we have used the inequality k−
1
2 ‖hT0

‖1 ≤ ‖hT0
‖2 and

e0 is defined as e0 = k−
1
2 ‖sT c

0
‖1. Since by definition sT0 =

sk, the best k-sparse approximation of s, sT c
0

= s − sk and
hence e0 = k−

1
2 ‖s − sk‖1. With these results, we are in a

position to prove Theorem II.1.
Proof of Theorem II.1: Our goal is to find a bound on

∆z, from which we can find a bound on ∆w. We do this by

3Note that we have used the subscript notation in a slightly different sense
earlier. However, it should be easy to distinguish between the two usages from
the context.
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first finding a bound for [∆z;hT0∪T1
] through bounds on the

quantity ‖Q∆z + hT0∪T1‖2. Using hT0∪T1 = h−
∑
j≥2 hTj ,

we get

‖Q∆z + hT0∪T1
‖2 = 〈Q∆z + hT0∪T1

, Q∆z + h〉 −
〈Q∆z + hT0∪T1

,
∑
j≥2 hTj

〉. (27)

Using triangular inequality, the first term in the right hand side
can be bounded as

〈Q∆z+hT0∪T1 , Q∆z+h〉 ≤ ‖Q∆z+hT0∪T1‖2‖Q∆z+h‖2.
(28)

Since hT0∪T1
is 2k sparse, using (22), we get

‖Q∆z + hT0∪T1
‖2 ≤

√
1 + δ2k‖[∆z;hT0∪T1

]‖2.

Further, using the bound ‖Q∆z+h‖2 ≤ 2ε, see equation (23),
we get

〈Q∆z + hT0∪T1
, Q∆z + h〉 ≤ 2ε

√
1 + δ2k‖[∆z;hT0∪T1

]‖2.
(29)

Now, we look at the second term in the right hand side of
equation (27). Since the support of hT0∪T1 and hTj , j ≥ 2 are
different, 〈hT0∪T1 , hTj 〉 = 0 for all j ≥ 2, and we get

− 〈Q∆z + hT0∪T1
,
∑
j≥2

hTj
〉 =

∑
j≥2

〈Q∆z,−hTj
〉

≤ δ2k‖∆z‖2
∑
j≥2

‖hTj‖2,

where we used the definition of δ2k and the fact that hTj

is k-sparse, and hence also 2k sparse. Further, using (26),
‖hT0‖2 ≤ ‖hT0∪T1‖2 and ‖∆z‖2 ≤ ‖[∆z;hT0∪T1 ]‖2

δ2k‖∆z‖2
∑
j≥2

‖hTj‖2 ≤ δ2k‖∆z‖2‖hT0∪T1‖2 +

2e0δ2k‖[∆z;hT0∪T1
]‖2 (30)

The quantity ‖∆z‖2‖hT0∪T1‖2 can be further bounded by
1
2‖[∆z;hT0∪T1

]‖22 (by applying the inequality 2ab ≤ a2 + b2).
Therefore,

δ2k‖∆z‖2
∑
j≥2

‖hTj
‖2 ≤ δ2k

2 ‖[∆z;hT0∪T1
]‖22 +

2e0δ2k‖[∆z;hT0∪T1 ]‖2. (31)

Finally, we obtain the following bound for ‖Q∆z+hT0∪T1
‖2

‖Q∆z + hT0∪T1
‖2 ≤ (2ε

√
1 + δ2k + 2e0δ2k)‖[∆z;hT0∪T1

]‖2
+ δ2k

2 ‖[∆z;hT0∪T1
]‖22.

Since hT0∪T1 is 2k sparse, from equation (22), we get

(1− δ2k)‖[∆z;hT0∪T1
]‖22 ≤ ‖Q∆z + hT0∪T1

‖22. (32)

From the above two equations, it follows that

(1− 3

2
δ2k)‖[∆z;hT0∪T1

]‖2 ≤ 2e0δ2k + 2ε
√

1 + δ2k. (33)

Since δ2k < 2
3 is an assumption of the Theorem, 1− 3

2δ2k > 0,
and hence

‖[∆z;hT0∪T1 ]‖2 ≤
2e0δ2k

1− 3
2δ2k

+
2ε
√

1 + δ2k

1− 3
2δ2k

. (34)

Since ‖∆z‖2 ≤ ‖[∆z;hT0∪T1
]‖2, we obtain

‖z‖2 ≤ C0k
− 1

2 ‖s− sk‖1 + C1ε

where C0 =
2δ2k

1− 3
2δ2k

, C1 =
2
√

1 + δ2k

1− 3
2δ2k

. (35)

Using the definition w = R−1z, we get ∆w ≤ ‖R−1‖2‖∆z‖2,
where ‖R−1‖2 is the spectral norm of R−1. Note that the
spectral norm of R−1 is given by its largest singular value,
which is the reciprocal of the smallest singular value of R.
Further, since X = QR and R share the same singular values,
‖R−1‖2 = τ−1, where τ is the smallest singular value of X .
Hence, we have the final result

∆w ≤ τ−1(C0k
− 1

2 ‖s− sk‖1 + C1ε). (36)

IV. EMPIRICAL STUDIES OF THE ROBUST REGRESSION
ALGORITHMS

In the previous Section, we have shown that if X is full
column rank and θ2k > cos−1( 2

3 ) (where θ2k is the smallest
principal angle between the regression and 2k-dimensional
outlier subspaces), then the l1-norm regularization approach
(BPRR) can handle k outliers. However, computing the quan-
tity θ2k is in itself a combinatorial problem. Hence, there is
no easy way to characterize the performance of BPRR. In this
Section we empirically characterize the performance of BPRR
and compare it with other robust approaches. We classify
the robust approaches into two major classes: 1) tradition
approaches such as M-estimators, LMedS, RANSAC and 2)
approaches based on compressive sensing theory such as the
BPRR and a Bayesian alternative to the sparse regularization
approach proposed in [18], [13]. Three important parameters
of the robust regression problem are: fraction of outliers in
the dataset f , dimension of the problem D and inlier noise
variance σ2. We study the performances of the algorithms
with respect to these parameters. The performance criteria
are estimation accuracy and computational complexity. In
Subsection IV-A we briefly introduce the robust approaches
and discuss the theoretical computational complexity of their
associated algorithms and in Subsection IV-B we empirically
study the performance of these algorithms.

A. Robust Regression Approaches and Computational Com-
plexity of Their Associated Algorithms

1) Compressive Sensing Based Robust Approaches:
• BPRR: We formulate BPRR (15) as a second order cone

programming problem. Since there are N +D variables
and one cone constraint of dimension N , the computa-
tional complexity of this algorithm is O

(
(N +D)2.5N)

)
[15].

• Bayesian Robust Regression (BRR): As an alternative to
the sparse regularization approach, a Bayesian approach
was proposed in [18], [13] towards solving the robust
regression problem (4). In this approach the outliers are
modeled by sparse priors [25] and they are then estimated
using the MAP criterion (see [18] for more details). The
main computational step of this approach (BRR) is the
MAP estimation step whose computational complexity is
O(N3).
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2) Traditional Robust Approaches:
• M-estimates: In M-estimates [12] a robust cost function
ρ(ei) of the residual error ei = yi−wTxi, i = 1, 2, ..., N
is minimized:

ŵ = arg min
w

N∑
i=1

ρ(ei) (37)

where the robust function ρ(e) should satisfy certain
properties (see [12]). In our experiments, we have used
the popular Tukey’s biweight function which is a robust
but non-convex function. The IRLS algorithm, which is
used for solving the optimization problem, is a polyno-
mial time algorithm with a computational complexity of
O
(
(N +D/3)D2

)
per iteration [17].

• LMedS: In LMedS the median of the residual error ei is
minimized, i.e.,

ŵ = min
w
median(e2

i ) (38)

This problem is solved by a random sampling algorithm,
which is combinatorial in the dimension of the problem D
[20], [10]. Thus, LMedS becomes impractical for solving
high-dimensional problems.

• RANSAC: In RANSAC the model parameter is estimated
by minimizing the number of outliers (which are defined
as data points that have residual greater than a pre-defined
threshold):

min
s,w
‖s‖0 such that ||y −Xw − s||∞ ≤ c, (39)

where c is the pre-defined threshold and is related to
the standard deviation of the inlier noise. The same
combinatorial random sampling algorithm as used in
LMedS is used for solving this problem, which makes
it impractical for solving high-dimensional problems.

B. Empirical Studies

We perform a series of empirical experiments to charac-
terize the performance of the robust regression approaches.
For each trial in the experiments, we generate the dataset
(xi, yi), i = 1, 2, . . . , N , xi ∈ RD, y ∈ R, and the model
parameters w ∈ RD in the following manner: xi’s are obtained
by uniformly sampling a D-dimensional hypercube centered
around the origin and w is a randomly sampled from a standard
Gaussian random variable. Depending on the outlier fraction
f , we randomly categorize the N indices into either inlier or
outlier indices. The yi’s corresponding to the inlier indices
are obtained from yi = xTi w+ n, where n is the inlier noise,
which we choose to be a Gaussian random variable N(0, σ2).
The yi corresponding to the outlier indices are obtained by
uniformly sampling the interval [−r, r], where r = maxi |yi|.
Regression accuracy is measured by the estimation error ‖w‖2.
BPRR, BRR and RANSAC need estimates of the inlier noise
standard deviation, which we provide as the median absolute
residual of the l1 regression. In our experiments, we have used
the MATLAB implementation of bisquare (Tukey’s biweight)
M-estimates, other M-estimates give similar results.

1) Studies by varying the fraction of outliers: In the first ex-
periment, we study the performance of the robust approaches
as a function of outlier fraction and dimension. We generate
N = 500 synthetic data with inlier noise standard deviation
σ = 0.001. Figure 2 shows the mean estimation error over
20 trials vs. outlier fraction for dimension 2 and 25. For
dimension 25, we only show BPRR, BRR and M-estimates as
the other approaches, LMedS and RANSAC, are combinatorial
in nature and hence very slow. Figure 2 suggests that, overall,
compressive sensing based robust approaches perform better
than the traditional approaches.

Fig. 2: Mean estimation error vs. outlier fraction for dimension
2 and 25 respectively. For dimension 25 we only show the
plots for BPRR, BRR and M-estimator, as the other approaches
(LMedS and RANSAC), being combinatorial in nature, are
very slow. This plot suggests that, overall, compressive sensing
based robust approaches perform better than the traditional
approaches.

2) Phase transition curves: We further study the perfor-
mance of the robust approaches with respect to outlier fraction
and dimension using phase transition curves [8], [9]. In
compressive sensing theory, where the goal is to find the
sparsest solution for an under-determined system of equations,
it has been observed that many algorithms exhibit a sharp
transition from success to failure cases: For a given level of
under-determinacy, the algorithms successfully recovers the
correct solution (with high probability) if the sparsity is below
a certain level and fails to do so (with high probability) if the
sparsity is above that level [8], [9], [16]. This phenomenon is
termed phase transition in the compressive sensing literature
and it has been used to characterize and compare the perfor-
mances of several compressive sensing algorithms [16]. We
also use this measure to compare the various robust regression
algorithms. In the context of robust regression, the notion of
under-determinacy depends on N and D. Since, there are N
observations and N +D unknowns, by varying D for a fixed
N we can vary the level of under-determinacy. The notion
of sparsity is associated with the outlier fraction. Hence, to
obtain the phase transition curves, we vary the dimension D
of the problem for a fixed N and for each D find the outlier
fraction where the transition from success to failure occurs.

As before, we choose N = 500 and σ = 0.001. We vary
D over a range of values from 1 to 450. At each D, we
vary the outlier fractions over a range of values and measure
the fraction of trials in which the algorithms successfully
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found the correct solution 4. Figure 3a shows the fraction of
successful recovery vs. outlier fraction for dimension 125 for
approaches BPRR, BRR and M-estimators (we do not show
LMedS and RANSAC as these approaches are very slow).
From this Figure we conclude that each of the approaches
exhibit a sharp transition from success to failure at a certain
outlier fraction. This confirms that phase transition do occur in
robust regression also. Next, for each regression approach and
dimension, we find the outlier fraction where the probability
of success is 0.5. Similar to [16], we use logistic regression
to find this outlier fraction. We then plot this outlier fraction
against the dimension to obtain the phase transition curves for
each of the approaches. Figure 3b shows the phase transition
curves for BPRR, BRR and M-estimators. Again, compressive
sensing based robust approaches (especially BRR) gives very
good performance.

(a) Recovery rate vs. outlier fraction (b) Phase transition curves

Fig. 3: Subplot (a) shows recovery rate, i.e. the fraction of
successful recovery, vs. outlier fraction for dimension 125 of
BPRR, BRR and M-estimators. From this plot we conclude
that each of the approaches exhibit a sharp transition from
success to failure at a certain outlier fraction. Subplot (b)
shows the phase transition curves for BPRR, BRR and M-
estimator. The phase transition curve for any approach is
obtained by computing for each dimension the outlier fraction
where the recovery rate is 0.5. From the phase transition
curves we conclude that the compressive sensing based robust
approaches (especially BRR) gives very good performance.

3) Studies by varying the amount of inlier noise: We also
study the effect of inlier noise variance on the performance
of the approaches. For this we fixed the dimension at 6, the
outlier fraction at 0.4 and the number of data points at 500.
Figure 4 shows that all approaches, except for LMedS, perform
well.

Finally based on the above experiments, we conclude
that overall compressive sensing based robust approaches
(especially BRR) perform better than the traditional robust
approaches. It has been suggested in [27] that the sparse
Bayesian approach (BRR) is a better approximation of the
l0 regularization problem than the l1-norm formulation, which
might explain the better performance of BRR over the BPRR.
However, analytical characterization of the Bayesian approach
is very difficult and could be an interesting direction of future
research.

4We consider a solution to be correct if ‖w−ŵ‖2
‖w‖2

≤ 0.01.

Fig. 4: Mean angle error vs. inlier noise standard deviation for
dimension 6 and 0.4 outlier fraction. All approaches, except
for LMedS, perform well.

V. DISCUSSION

In this paper we addressed the traditional robust regression
problem and stated the precise conditions under which sparse
regularization (l0 and l1-norm) approaches can solve the robust
regression problem. We showed that θk (the smallest principal
angle between the regressor subspace and all k-dimensional
outlier subspaces) is the fundamental quantity that determines
the performance of these algorithms. Specifically, we showed
if the regressor matrix X is full column rank and θ2k > 0,
then the l0 regularization can handle k outliers. Since, l0
optimization is a combinatorial problem, we looked at its
relaxed convex version BPRR. We then showed that if X is a
full column rank matrix and θ2k > cos−1( 2

3 ), then BPRR can
handle k outliers.

However, computing the quantity θk is in itself a combina-
torial problem. Hence, we characterize the BPRR algorithm
empirically and compare it with other robust algorithms such
as M-estimates, LMedS, RANSAC and a Bayesian alternative
to the sparse regularization approach (BRR). Our experiments
show that BRR gives very good performance. It has been
suggested in [27] that the sparse Bayesian approach is a better
approximation of the l0 regularization problem than the l1-
norm formulation, which might explain the better performance
of BRR over the BPRR. However, analytical characteriza-
tion of the Bayesian approach is very difficult and is an
interesting direction of future research. Another interesting
direction of future research would be to find greedy algorithms
that can provide lower and upper bounds on the quantity
θk.
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