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Figure 1: Compressive epsilon photography enables post-capture freedom from a few carefully selected photographs of a scene.
Lurking among the gamut of photographs that can be obtained by varying camera parameters are a few photographs that can truly capture the
aesthetics of a scene. In this paper, we enable complete post-capture freedom by estimating the entire collection of photographs corresponding
to varying camera parameters from a few select photographs at pre-determined camera parameters (marked in blue).

Abstract

A traditional camera requires the photographer to select the many
parameters at capture time. While advances in light field photog-
raphy have enabled post-capture control of focus and perspective,
they suffer from several limitations including lower spatial reso-
lution, need for hardware modifications, and restrictive choice of
aperture and focus setting. In this paper, we propose “compres-
sive epsilon photography,” a technique for achieving complete post-
capture control of focus and aperture in a traditional camera by ac-
quiring a carefully selected set of 8 to 16 images and computation-
ally reconstructing images corresponding to all other focus-aperture
settings. We make the following contributions: first, we learn the
statistical redundancies in focal-aperture stacks using a Gaussian
Mixture Model; second, we derive a greedy sampling strategy for
selecting the best focus-aperture settings; and third, we develop an
algorithm for reconstructing the entire focal-aperture stack from a
few captured images. As a consequence, only a burst of images
with carefully selected camera settings are acquired. Post-capture,
the user can then select any focal-aperture setting of choice and
the corresponding image can be rendered using our algorithm. We
show extensive results on several real data sets.
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1 Introduction

The transition from film to digital was largely about convenience.
While there has been remarkable technological breakthroughs in
optical flexibility and computational capabilities of digital cameras,
photography still mimics film in some unfortunate ways: the pho-
tographer is still required to set all camera parameters such as focus,
aperture, exposure, and ISO at capture-time and has limited flexi-
bility in changing these settings post-capture. While professional
photographers have mastered the art of making the correct choices
during capture-time, the need to get all the camera parameters cor-
rect in the heat of the moment impedes casual photographers from
acquiring breathtaking photographs. Given the enormous strides
in resolution, low-light performance, user interface and physical
size that have been made in digital cameras, pre-capture settings re-
main stubbornly as one of the last frontiers in digital photography
severely limiting the ability of casual photographers. Thus, there
is an immediate need for methods that enable near-complete post-
capture control in digital photography.

Digital photography has slowly started making a move in this direc-
tion with the advent of consumer light-field cameras [Gortler et al.
1996; Levoy and Hanrahan 1996]. Light-field cameras such as the
Lytro [Lytro ] and the Raytrix [Raytrix ] use a micro-lens array
to capture multiple viewpoints of the scene simultaneously. This
allows for post-capture control of focus albeit at the loss of spa-
tial resolution. Green et al. [Green et al. 2007] proposed a method
for multi-aperture photography that allows for near-complete post-
capture control of aperture size by exploiting a special modifica-
tion to the lens that captures the rays from concentric disks around
the aperture in 4 separate fields on the image plane. In these tech-
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niques, careful hardware modifications to an existing camera with
the use of appropriate reconstruction algorithms allow for limited
post-capture control. Hardware modifications to existing digital
cameras pose a practical challenge and as a consequence there is a
need for techniques that can be applied on current digital cameras.

Epsilon photography [Raskar 2009] is an alternative technique
where a large set of images acquired with varying parameter set-
tings on the camera allows for limited post-capture flexibility. Sev-
eral examples of such techniques have been popular including fo-
cal stack photography [Kutulakos and Hasinoff 2009], high dy-
namic range (HDR) photography [Debevec and Malik 1997], con-
focal stereo [Hasinoff and Kutulakos 2006], focal sweep [Hasinoff
and Kutulakos 2006], multi-image panorama stitching [Brown and
Lowe 2007], and lucky imaging [Law et al. 2005; Joshi and Co-
hen 2010]. In almost all these techniques, the goal is to capture
multiple images with varying parameter settings on the camera and
then fuse these images together to generate a composite image, or
to make some meaningful inference (e.g., depth) about the scene.
While such techniques are becoming popular, they require a large
number of images to be acquired.

For one dimensional parameter variations such as HDR imaging
and focus stack photography, epsilon photography is becoming the
de-facto method especially for static or slow-moving scenes. Nev-
ertheless, when two-dimensional (or more) parameter variations are
needed, epsilon photography becomes exceedingly cumbersome,
needing the capture of several thousand images. Consider confocal
stereo as an illustrative example; capturing 61 focus settings and 13
aperture settings as in [Hasinoff and Kutulakos 2006] requires the
capture of 793 images requiring several hours of capture time and
necessarily eliminating any hope of such techniques extending to
account for any scene motion.

Key idea. The central theme of this paper is to study, characterize,
model and exploit the redundancy in the intensity variations at a
pixel when the camera parameters change, and develop a technique
for recovering the entire epsilon photography stack from a small
subset of observed images with varying parameter settings.

Let us motivate the intuition for this redundancy by looking at in-
tensity variations as a single camera parameter is varied. When only
the ISO is varied, the observed intensity changes linearly until sat-
uration (barring sensor noise). When the aperture is varied while
keeping focus and ISO constant (exposure duration is changed to
keep light level constant), the observed intensity changes smoothly
due to spatial blur variations. Similarly, when the focus setting
is varied while keeping ISO, aperture, and exposure constant, the
observed intensity changes smoothly due to the smooth changes
in depth-dependent blur. In both these cases, the blur-induced in-
tensity variations are low frequency phenomena and can be mod-
eled as having low-dimensional support. Thus, the intensity varia-
tions observed at an individual pixel are inherently low-dimensional
and can be accurately modeled using appropriate signal processing
techniques, thereby allowing for their reconstruction from just a few
observed images (with carefully selected camera settings that span
the entire low-dimensional subspace).

Contributions: The key technical contributions of this paper are

• We carefully study and characterize the intensity variations ob-
served at a pixel as camera parameters vary, and show that this
‘per-pixel intensity profile’ is inherently low-dimensional.

• We show that approximating the per-pixel intensity profile using
a Gaussian Mixture Model captures 99.6% of the energy result-
ing in a very accurate approximation.

• We propose ‘compressive epsilon photography’, where a few im-
ages acquired with carefully selected camera settings enables

complete recovery of the per-pixel intensity profile resulting in
post-capture flexibility and control hitherto unachievable.

• We propose a greedy algorithm to select camera settings for max-
imize reconstruction performance.

• We show several examples of compressive epsilon photogra-
phy ranging including one-dimensional focal stacks and two-
dimensional focal-aperture stacks (confocal stereo).

Limitations. A key limitation is that we do not account for
motion during the acquisition (or motion blur) and hence, the re-
sults presented here are only applicable for static or slow-moving
scenes. We show that in practice 8 − 16 images are sufficient for
most scenes. By using the burst mode capability of cameras, these
8 − 16 images can be captured within a short duration; this sig-
nificantly expands the operational regime of conventional epsilon
photography. Per-pixel modeling , the basis of the proposed ap-
proach, assumes that the same scene point is observed at the same
pixel when the camera settings are varied. When this is not the case,
the calibration procedure described in Section 5 should be used to
pre-process the data before applying the reconstruction algorithms.
Finally, the training data used for learning the model parameters
needs to be rich and diverse enough in order to capture all the nat-
ural variations observed in the test datasets. In particular, scenarios
such as sharp specularities, spectral separation due to diffraction,
lens flares and glares, etc. may not lead to accurate reconstructions
due to limited occurrence in training data. Per-pixel modeling also
fails when a very bright light source is adjacent to a pixel; in such
cases, the contribution of the high intensity point to the blur may be
underestimated resulting in intensity errors. Finally, the algorithm
is only trained to generate the natural blur of traditional cameras
and if the rendering task is to simulate a specific structured bokeh,
then additional processing may be necessary.

2 Prior work

2.1 Epsilon photography

While image-based rendering and inference techniques that rely on
multiple images acquired by varying camera parameters such as
exposure, field-of-view, ISO, aperture, viewpoint and focus have
been in use for over a decade, recently they have been collectively
referred to as “epsilon photography” [Raskar 2009] since they rely
on acquiring a set of images with incremental (or epsilon) changes
to the camera settings.

Multi-image denoising/deblurring. Multiple images can be used
to improve image denoising performance [Buades et al. 2009], and
image deblurring [Sroubek and Milanfar 2012; Yuan et al. 2007].

HDR imaging: One widely used technique for HDR is exposure
bracketing where a series of images are captured with exponen-
tially increasing exposure durations [Mann and Picard 1994; De-
bevec and Malik 1997]. In addition to varying exposure, varying the
ISO parameters can further enhance performance of HDR imaging
in noisy and low light areas [Hasinoff et al. 2010]. There have also
been some attempts to acquire HDR images by varying the aperture
in a camera [Hasinoff and Kutulakos 2007], but in such cases the
varying depth of field in the images needs to be taken into account.

Focal stack photography. The collection of images obtained by
sweeping the focus position through the scene is called focal stack
[Agarwala et al. 2004]. This enables depth estimation as well as ac-
quisition of an extended depth of field (EDOF) image [Kuthirum-
mal et al. 2011]. In microscopy, this enables 3D reconstruction
and compensates for the shallow depth of field due to the large nu-
merical aperture of the microscope [McNally et al. 1999; Sibarita
2005]. In both these cases, the number of images acquired increases
linearly with the aperture size and the volume being imaged, since
every scene point needs to be sharp in at least one of the acquired



images. Compressive epsilon photography learns the redundancies
in intensity variations caused due to varying focus and therefore
can reconstruct images with intermediate focus settings accurately,
reducing the number of images required for focal stack methods.

Aperture stack photography. Hasinoff and Kutulakos [Hasinoff
and Kutulakos 2007] showed that acquiring images with varying
aperture sizes enables interesting and useful rendering effects, in-
cluding depth of field manipulation and HDR acquisition. Our com-
pressive reconstruction algorithm enable a significant reduction in
the number of aperture images that need to be acquired by effec-
tively interpolating images with unseen apertures.

Confocal stereo. Most techniques for epsilon photography have
been restricted to varying one camera parameter. In confocal stereo
[Hasinoff and Kutulakos 2009], both the aperture size and the fo-
cus position are simultaneously varied and a large collection of
images is acquired. Analyzing the intensity of a single pixel, as
both aperture and focus settings vary, shows the property of “con-
focal constancy”, i.e., the normalized intensity (to account for aper-
ture area) does not change with aperture size when that particu-
lar pixel is in focus. This results in an algorithm for estimating
per-pixel depth without resorting to any neighborhood based meth-
ods. All previous techniques such as depth from focus, depth-
from-defocus and stereo require neighborhood smoothness assump-
tions [Krotkov 1988; Grossmann 1987] and therefore cannot handle
complex scenes with thin single-pixel subjects such as hair. Con-
focal stereo was the first method to be able to produce indepen-
dent, per-pixel estimates of depth. Unfortunately, this method re-
quires an inordinately large number of input images; for example
for many scenes in this paper, traditional confocal stereo would re-
quire 61×13 = 793 images. This makes the technique impractical
except for static scenes. Exploiting the redundancy in per-pixel in-
tensity profiles enables us to reconstruct the entire confocal data
from a subset of images (typically 8 − 16); thus making confocal
stereo methods practical even for non-static scenes.

Light-field [Gortler et al. 1996; Levoy and Hanrahan 1996] has be-
come a popular and useful representation for image-based render-
ing. Light-fields offers immense flexibility in post-capture control
including focus, aperture, and perspective changes. However, the
direct methods of capturing light-fields [Levoy and Hanrahan 1996;
Lytro ; Raytrix ] either trade off spatial resolution or require sig-
nificant hardware changes/resources [Boominathan et al. 2014] for
the same sensor resolution and provide much limited aperture/focus
control as compared to our framework. Several techniques have
also been developed to reconstruct light-fields from focal or aper-
ture stacks [Levin and Durand 2010; Green et al. 2007]; as we show
in our comparisons, we outperform all of these significantly in pro-
viding a finer control over depth-of-field (aperture) and focus.

2.2 Compressive sensing

Compressive sensing enables reconstruction of signals from un-
dersampled data by exploiting the redundancy in the signal struc-
ture [Baraniuk 2007; Candès and Wakin 2008]. This is done by
exploiting signal sparsity and utilizing algorithms that minimize
the ℓ1-norm of the signal. Such methods have resulted in several
compressive imaging systems for capturing light-fields [Marwah
et al. 2013; Tambe et al. 2013], light-transport matrices [Peers et al.
2009], videos [Park and Wakin 2009] and hyper-spectral data [Wa-
gadarikar et al. 2008]. This paper is similar in spirit to compressive
sensing; in that, we reconstruct the entire epsilon photography stack
from just a few carefully selected images.

Gaussian Mixture Models. Recently, it has been shown that Gaus-
sian Mixture Models (GMMs) are an effective prior for compressive
sensing applications [Baron et al. 2010; Yang et al. ; Bourrier et al.
2013]. Following this, methods for compressive sensing of images

Figure 2: Dependence on focus stack intensity profiles for vary-
ing aperture. Intensity variations observed at a few pixels for
the “animals” scene in Figure 3. Each figure shows how intensity
varies at a pixel with focus plane variations for different aperature
setting. Note how the intensity profiles gracefully degenerate from
the larger-variation profile observed at large apertures (F/2) to the
fairly shallow profile at small apertures (F/16).

[Yu et al. 2012], videos [Yang et al. 2013], and light-fields [Mitra
and Veeraraghavan 2012] have been proposed using GMMs. GMM
has also been used to study compressive computational imaging
systems [Mitra et al. 2014]. In this paper, we utilize a GMM-based
compressive sensing framework to reconstruct the complete epsilon
photography stack from undersampled set of images. We also uti-
lize the GMM model to greedily select a set of camera parameters
to acquire image with.

3 Redundancy in epsilon photography

Epsilon photography refers to the space of images that can be cap-
tured using a camera by varying exposure time, aperture size, focus
plane, and ISO. While the space of such images is large, there are
key redundancies that we can identify which we eventually use to
obtain compressive epsilon photography. In this section, we look
at different slices of the epsilon photography stack and infer geo-
metric properties for each. Specifically, we look at the focus stack
— the space of images obtained by varying only the focus posi-
tion — and focus-aperture stack — the space of images obtained
by varying both the focus and aperture.

3.1 Per-pixel intensity profiles

Our goal is photographic-quality rendering of the space of images
that can be captured by a camera. Inspired by work in confocal
stereo [Hasinoff and Kutulakos 2009], we adopt to model the per-
pixel intensity variations observed when the camera parameters are
varied. The key promise of per-pixel modeling is that the spatial
resolution of the photographs is easily preserved and no smooth-
ness assumptions need to be made, resulting in the ability to extract
sharp information even on single-pixel edges such as hair.

Let Iu,v(f, a, i, s) be the intensity profiles observed at a pixel (u, v)
for varying focus setting f , aperture size a, ISO values i, and ex-
posure times s. For static scenes, the parameters governing expo-
sure becomes largely irrelevant except for governing overall light-
levels. To this end, we fix the exposure setting such that the overall
light-level is held constant. This implies that s = Ca2, where
C is an arbitrary constant. For the rest of the paper, we consider
only variations in focus and/or aperture and hence, only consider
Iu,v(f, a) = Iu,v(f, a, i, Ca2) implicitly fixing exposure time and
holding ISO constant at some pre-determined value to achieve con-
stant light-levels. Note that, if we fix the aperture a, Iu,v(f) purely



Figure 3: Redundancies in focus stack datasets. (a) Images from three different focus stack datasets and color-coded intensity variations
for varying focus observed at different pixels. Note how the intensity profiles are largely unimodal with the peak/valley corresponding to the
depth of the pixel. (b) We apply k-means clustering on the intensity profiles observed at individual pixels for varying focus settings. Plot of
energy compaction with 100 clusters shows that more than 98.5% of the energy is captured by the 100 cluster centers. A 10 dimensional
subspace around each cluster center allows us to capture more than 99.5% of the energy. (c) Shown are the intensity profiles corresponding
to the top-9 cluster means (in red) and the standard deviation around the mean (in black, dotted). The ensuing set of intensity profiles form
tight clusters that can be used to build strong statistical models. These statistical models enable compressive epsilon photography.

models intensity variations with varying focus setting — referred to
as the focus stack [Agarwala et al. 2004][Kutulakos and Hasinoff
2009]. Similarly, Iu,v(f, a) captures intensity variations with aper-
ture and focus — also referred to as aperture-focus image (AFI),
a key construct used in many prior papers including the seminal
work of Hasinoff and Kutulakos [Hasinoff and Kutulakos 2009].
We study both these cases, individually, next.

3.2 Focus stack intensity profiles

Figure 3 shows intensity variations for varying focus settings as ob-
served in three different datasets captured with a Canon SLR using
a 50mm lens. Since we are interested solely in focus variations, we
obtained images at ISO100 and aperture F/1.4; the aperture chosen
corresponds to the largest aperture setting in our camera. Typically,
most intensity variations are observed at the largest aperture set-
ting since for smaller apertures produce larger depth of field and
smaller defocus blurs (see Figure 2). At this setting, we varied the
focus settings electronically to obtain 45 unique focus planes.

From Figure 3 it is clear that a large percentage of the intensity pro-
files are unimodal with a well-defined peak/valley. The geometric
explanation to this is that, over the small perspective of the aperture,
scene points are nearly Lambertian and hence, there is a specific fo-
cus setting where the point is in focus (an intensity peak or valley is
reached at this focus setting). For other focus setting, defocus blur
averages this point with intensities from the neighborhood of the
pixel. As seen in the figure, while there are subtle variations, the
predominant trend is a gradual shift of the intensity from the pixel’s
own intensity value when it is in focus to the average intensity value
of its neighbors when defocus blur is very large.

3.3 Focus-aperture stack intensity profiles

Figure 4 shows per-pixel AFIs of size 45 × 18 corresponding to
45 focus settings and 18 F-stops. Similar to the focus stack in-

tensity profiles, they exhibit predictable structures. First, when a
scene point is in focus, changing the aperture does not change it
intensity — hence, we obtain a vertical equi-intensity line at the
correct focus. This property is the confocal property used in [Hasi-
noff and Kutulakos 2009]. Second, at the smallest aperture setting,
the depth-of-field is very large and hence, there is little variation in
intensities as we vary the focus settings. This leads to an approx-
imately equi-intensity horizontal line. Finally, the specifics of the
neighborhood around a point leads to various equi-intensity profiles
linking the intensity profile at the largest aperture and the small-
est aperture. These are harder to predict since they depend on lo-
cal neighborhood structures; however, they are smooth variations
which suggests associated redundancies.

3.4 Clustering and predictability

For both focus-stack and aperture-focus stack datasets, we per-
formed k-means clustering on the per-pixel intensity variations af-
ter normalizing the mean and standard deviation of each profile.
Figure 3 shows the top 9 recovered mean intensity profiles and the
standard deviation within each cluster. We recovered 100 clusters
— however, the top 50 clusters accounted for over 80% of the to-
tal intensity profiles. We observe distinct cluster means that have
well-defined peaks/valleys and tight clustering around each mean
profile. The small deviation around the mean profiles indicate that
intensity variations around the peak – once suitably normalized —
are largely predictable once we associate a cluster label to it.

The intensity variations in the focal stack are due to blur which is a
low frequency phenomenon. This suggests that low-dimensional
models may be sufficient to capture these variations. Figure 3
shows the energy compaction achieved by modeling these varia-
tions using 100 clusters and a PCA basis around each cluster. The
100 cluster centers alone capture more than 98.5% of the energy
and even a 10 dimensional PCA basis account nearly 99.5% of the



Figure 4: Redundancies in focus-aperture datasets. (a) Shown
are images from three datasets and the AFI images observed at
different pixels. (b) We apply k-means clustering on the AFI im-
ages. Plot of energy compaction with 450 clusters shows that more
than 97% of the energy is captured by the 450 cluster centers. A
10 dimensional subspace around each cluster center allows us to
capture more than 99% of the energy. (c) We look at energy com-
paction plot, but now for AFI images separated into three types cor-
responding to lvarying levels of high-frequency textures at patches
surrounding the point. Again, we see very high redundancies even
at textured regions.

energy indicating that these profiles are highly ‘compressible’.

Similar conclusions can be drawn from clustering per-pixel AFIs.
Figure 4 also shows the energy compaction that can be achieved by
modeling these intensity variations using 450 cluster centers and
low dimensional PCA basis around these cluster centers. The 450
cluster centers alone capture more than 97% of the energy and even
a 10 dimensional PCA basis around these clusters account for more
than 99% of the energy. The energy compaction results largely re-
main the same when we look at AFI images clustered according
to level of texture. Specifically, for each point, we look at the oc-
currence of strong gradients on the smallest aperture image (equiv-
alently, the all-in focus image) and separate the pixels into three
groups according to this measure. Even for highly-textured regions
where we can expect our per-pixel modeling to fail, we obtain a
compaction of 96% with just the cluster center and 99% with a 10-
dimensional subspace approximation about the cluster center. In
all, this indicates that the AFIs are very ‘compressible’.

Both of these clustering results are a direct consequence of the
unimodality which provides a certain level of alignment across
intensity profiles. It is well known that any form of registra-
tion/alignment enhances linear correlations that can be captured
well using PCA. This observation suggests that focus stack inten-
sity variations observed at pixels are highly redundant — once we
associate a specific focus plane to a scene point, we can expect to
predict its entire intensity profile using just a few samples. This
forms the basis for compressive epsilon photography.

4 Compressive epsilon photography

Our goal is to to perform per-pixel reconstructions of intensity vari-
ations as we change camera parameters; the promise of such meth-
ods is in their ability to preserve the true resolution of the input

images. For this purpose, we learn per-pixel priors for different
tasks such as focal stack and focus-aperture stack. For focus stack,
we learn a prior for Iu,v(f) and for focus-aperture stack we learn
a prior for Iu,v(f, a) or AFIs. From Figures 3 and 4, it is clear
that the intensity profiles are tightly clustered around the cluster
centers. A natural way for modeling such signals is via Gaussian
Mixture Models (GMMs). Note that we could also model such sig-
nals using dictionaries [Rubinstein et al. 2010]; however, we choose
GMM because it is analytically tractable [Mitra and Veeraraghavan
2012] and can be used for selecting camera parameters.

4.1 GMM prior

We collected 5 focal stack datasets, extracted per-pixel intensity
profiles, and then used these as training data to learn the GMM
priors. Similarly, for AFI in focus-aperture stack, we collect 9
datasets, with varying scene complexity, extract per-pixel AFI and
then learn GMM priors from them. To learn the GMM prior, we
use an EM algorithm to iterate through learning cluster member-
ship and learning mean and covariance for each cluster. At the end
of the EM algorithm, we obtain all the GMM parameters which in-
clude the number of clusters K, cluster weights pk (fraction of data

that belongs to a cluster), cluster means u(k), and covariances C(k).
The prior model is given as

f(x) =
K∑

k=1

pkN
(
x; u(k), C(k)

)
.

4.2 Reconstruction using GMM prior

During reconstruction, our goal is to estimate the per-pixel inten-
sity profile (in case of focal stack) or AFI (in case of focus-aperture
stack) from observed sub-samples. The relation between the ob-
served sub-samples and the complete profile is of-course linear and
can be expressed as y = Hx+ n, where y represents the observed
sub-sampled in vectorized form, x represents the complete intensity
profile or AFI in vectorized form, H is the transformation matrix,
and n is observation noise. We assume noise to have Gaussian dis-
tribution N (0, Cn) with zero mean and covariance Cn.

For reconstruction we use the Minimum Mean Square Error
(MMSE) estimator. Given an observation y, the posterior distribu-

tion f(x|y) of x is again a GMM with new cluster weights α(k)(y)

and new (posterior) cluster Gaussian distributions f (k)(x|y):

f(x|y) =
K∑

k=1

α(k)(y)f (k)(x|y),

where f (k)(x|y) is the posterior distribution of the kth Gaussian

f (k)(x|y) = N
(
x; u

(k)

x|y(y), C
(k)

x|y

)

with mean u
(k)

x|y(y) and covariance C
(k)

x|y, given by

u
(k)
x|y(y) = u(k) + C(k)HT (HC(k)HT + Cn)

−1
(
y −Hu(k)

)
,

C
(k)

x|y = C(k) − C(k)HT (HC(k)HT + Cn)
−1HC(k). (1)

The new weights, α(k)(y), given as

α(k)(y) =
pkf

(k)(y)
∑K

i=1 pif
(i)(y)

,

are the old weights pk modified by f (k)(y), the probability of y
belonging to the kth mixture component

f (k)(y) = N
(
y;Hu(k),HC(k)HT + Cn

)
.



Figure 5: Greedy image selection. Comparison of PSNR as a
function of the number of acquired images for various methods of
sampling clearly shows the efficacy of our greedy sampling scheme.
Note that the proposed scheme provides almost 10dB improvement
over traditional sampling methods.

The MMSE estimator x̂(y) is the mean of the posterior f(x|y), i.e.,

x̂(y) =
K∑

k=1

α(k)(y)u
(k)
x|y(y).

The corresponding MMSE is given by

MMSE(H) = E||x− x̂(y)||2 (2)

4.3 Greedy algorithm for image selection

Our goal is to reconstruct the focal and focus-aperture stacks by
observing a minimal number of images corresponding to certain
choices of camera focus and aperture settings. Thus, choice of
camera parameters to observe is an important consideration1. We
propose a greedy algorithm based on minimizing the MMSE (2).
A tight analytic lower bound for the MMSE has been derived by
[Flam et al. 2012][Flam et al. 2011] and we exploit this lower bound
to derive a greedy sampling strategy. The lower bound of MMSE is
given by:

MMSE(H) =

K∑

k=1

pkTr
(
C

(k)

x|y

)
, (3)

where C
(k)
x|y is the posterior cluster Gaussian covariance (1).

Finding optimal camera parameters is a combinatorial problem
since we need to choose parameters from a pre-defined set of focus-
aperture values. We instead rely on a greedy strategy that selects
one camera setting at a time that best minimizes the MMSE given
previously selected camera parameters. Suppose that there are a
total of Nf focus settings and a total of Na aperture settings in a
given camera. If we are interested in capturing only m images cor-
responding to m camera settings, then the brute-force version of the

algorithm will require evaluating the MMSE (3) for
(
NfNa

m

)
times,

which becomes practically impossible. Hence we device a greedy
algorithm. We first find the optimal pair of camera parameters, i.e.,

m = 2 by evaluating the MMSE
(
NfNa

2

)
times. Given this pair,

we then update the posterior covariance matrices Cx|y to take into
account the effect of the current selected camera parameters. Each
choice of camera parameter correspond to a row hi in the H ma-

trix. After the ith iteration, the posterior covariance is updated as
follows:

C
(k)

x|y,i
= C

(k)

x|y,i−1
−C

(k)

x|y,i−1
ĥT
i (ĥiC

(k)

x|y,i−1
ĥT
i +Cn)

−1ĥiC
(k)

x|y,i−1

1For focal stack, uniform sub-sampling of the focus axis is a good choice

as this corresponds to uniform sampling in scene depth. But for focus-

aperture stack, the choice of optimal camera parameters is not so obvious.

Figure 6: Geometric calibration for precise alignment. An input
near-side focus image (a) is calibrated (b) so that the correspond-
ing objects appear at the same locations in images captured with
a different focus-aperture setting. Calibration is performed using
a farthest focus image (c) as reference. The figures in (d) clearly
show that enlarged patches appearing at distinct depths are accu-
rately aligned against the reference image after calibration. In (e),
the trajectories of warping directions are shown which suggest that
the images corresponding to near-side focus (a) are magnified in
comparison with to far-side images (c) as can be seen clearly.

with the initial posterior covariances Ck
x|y,0 being the same as the

prior GMM covariances, C
(k)
x . After this covariance update step,

we find the next camera setting by evaluating the MMSE expres-
sion with updated covariances. Note that from the second iteration,
we need to evaluate the MMSE expression just NfNa times, which
provides a significant reduction in computations. Figure 5 shows
how the MMSE decreases as a function of the number of chosen
camera parameters m. We can conclude that by capturing 8 im-
ages with this prescribed camera settings, we should be a able to
reconstruct the focus-aperture stack with Nf = 45 and Na = 20.

Figure 5 shows a comparison of PSNR as a function of the num-
ber of acquired images for (a) proposed sampling strategy, (b) fo-
cus stack with large aperture (c) aperture stack with focus position
at mid point, (d) random sampling of focus-aperture pairs and (e)
uniform sampling of focus-aperture pairs. Note that the proposed
scheme provides almost 10 dB improvement over all traditional
sampling methods. This result indicates, that even when the goal
is not complete post-capture control, but rather traditional focal or
aperture stacking (say for depth estimation), our optimized sam-
pling strategy is significantly better.

5 Geometric and photometric calibration

Since we employ a per-pixel based model for learning and recon-
struction, precise geometric and photometric calibration with sub-
pixel level accuracy is essential. For this purpose, we adopt the
procedure in [Hasinoff and Kutulakos 2009].

Geometric Calibration. It is a well known fact that changes in fo-
cal settings result in a non-linear warp of the objects in the scene. In
[Hasinoff and Kutulakos 2009], it was shown that this warp can be
accurately modeled by considering parameters for image magnifi-
cation, lens distortion and translation. For estimating these param-
eters, we collected images of a calibration chart containing black
dots on a grid at the largest aperture (F/1.4). Registration among
images in the dataset was realized by unwarping the images ac-
cording to the estimated parameters. Figure 6 shows an example of
geometric calibration achieving precise alignment.

Photometric Calibration. Modifying the aperture causes a change
not only in depth of field but also results in vignetting. This vi-



gnetting is corrected for by collecting and normalizing against a set
of reference white images.

6 Experimental results

To validate our approach, we collected 5 test datasets and 6 training
datasets for focus-aperture stack reconstruction. For focus-stack
reconstruction, we use a subset of the samples from the 5 focus-
aperture stack test datasets. All datasets were captured using Canon
EOS-40D camera with a Canon EF 50mm fixed focal length lens.
The cameras were controlled from a computer. We use a combina-
tion of 18 aperture and 45 focus settings for capturing the focus-
aperture stack. The aperture was varied from F/2.2 to F/16 while
the 45 focus settings covered a depth range of 0.45m to 1m.

Raw-images were captured at a resolution of 1988×1296. How-
ever, we down-sample the images to a lower resolution of 600×400
since the geometric calibration process is slow and is directly pro-
portional to the number of pixels being processed. However, given
the per-pixel processing algorithms used, the quality of our results
are independent of the actual resolution of the images — although
processing times do scale linearly with number of pixels. In all ex-
periments described in the paper, the training and testing datasets
were completely different and there was no overlap between the
training and testing datasets.

6.1 Focus stack reconstructions

We reconstruct the entire focus stack from only a few input images.
All focus stacks were collected with the largest aperture of F/1.4.
Intuitively, the stack corresponding to the larger apertures exhibit
greater variability as compared to the smaller apertures that have
large depth-of-fields. Given a few input images — corresponding
to a few select focus settings, we reconstruct per-pixel intensity pro-
files for the entire focus range using our GMM algorithm.

A key test for our algorithms is to verify whether scene points that
are never obtained in sharp focus can be focused. Figures 7 and
8 show multiple examples of this; in both cases, we reconstruct
a focal stack of 45 images from just 8 input images. We obtain
reconstruction SNRs of 25.8 dB for the “Animals” dataset (Figure
7) and 32 dB for the “Liquid” dataset (Figure 8). In both Figures,
we also show reconstructed per-pixel intensity profiles for select
points — these match the ground truth profiles accurately. Figure 7
(c) and (d) show reconstructed images at intermediate focus planes
to input images. The input images in Figure 7(c) has “leaf 1” is
focus in the first image (at focal setting 31) and “leaf 3” in focus in
the second image, whereas “leaf 2” is not in focus in either. We can
clearly see that the blur in leaf 1 increases linearly, whereas that in
leaf 3 decreases linearly. Also leaf 2, which was blurred in both the
input images, is sharper in the intermediate images.

Note that our reconstructions can handle a wide range of complex
materials quite gracefully including transparent objects (“glass” in
Figure 8(c)), specularities (“grape 1” and “grape 2” in Figure 8(d)),
sub-surface scatterers (“orange” in Figure 8(c)).

A key application of focus stack photography is its ability to provide
high-quality all-focus images. We validate our ability to recover
such images from reconstructed focus stacks. As a comparison, we
also show results from focal stack reconstructed using cubic spline
interpolation. We compute the depth map and all focus image us-
ing a commercially available software HeliconSoft. Figure 9 shows
that the depth map and all focus image obtained using our recon-
structed stack is very close to the depth map and all focus image
computed from the ground truth 45 image focal stack. The depth
maps obtained using spline interpolated focal stack are relatively
poor. Moreover, the all focus image obtained from spline interpo-
lation shows lots of artifacts.

6.2 Focus-aperture stack reconstructions

We reconstructed focus-aperture stacks for 3 datasets using 4, 8, 16
and 32 input images. The reconstruction performance as a func-
tion of number of input images is shown in Figure 10. There is
not much improvement in the “Chess” dataset as the number of in-
put images is increased from 4 to 32; however for more complex
datasets such as the “Animal” dataset or the “Glassball” dataset
owing to the increased texture and refractive elements, there is a
significant improvement as one moves from 4 to 16 images and a
slight improvement as we go to 32 images. Hence, irrespective of
the complexity of the scene, we can reliably reconstruct the focus-
aperture stack using 16 input images. Part (c) of the same figure
shows that we are able to generate AFI images which are very close
to ground truth from the reconstructed focus-aperture stack. As a
result, the estimated depth map obtained by applying the confocal
stereo algorithm on our reconstructed focus-aperture stack is very
close to the one obtained by applying the confocal stereo algorithm
on the ground truth focus-aperture stack directly.

In Figure 11, we show that we are able to accurately reconstruct
patches from the input datasets even for a combination of focus and
aperture settings that are far away from the focus-aperture combi-
nations at which the 16 input images were captured. A close-up of
results on the “chess” and “glassball” dataset is shown in Figure 12.

In Figure 13, we visualize the reconstructed focus-aperture stacks
by looking at two subsets. In Figure 13(a), we look at a focus stack
where we keep the aperture fixed at F/2.0 — the largest setting –
and vary the focus. Observe the clear transition of focus from the
Glassball to Pooh to Tigger to the Angry Bird as we sweep through
the focus planes. In Figure 13(b), we look at an aperture stack
where we keep the focus fixed and vary the aperture. Observe the
increase in depth of field as we increase the aperture from F/2.2 to
F/11. In summary, we are able to reliably reconstruct objects placed
at unobserved focal planes even for large aperture settings.

Figure 14 shows 24 samples from the reconstructed focus-aperture
stack of a tennis racquet kept outdoors. The entire stack containing
810 images was reconstructed from just 16 captured images. All
the essential characteristics of a focus-aperture stack such as blur,
depth of field and focus are exhibited naturally.

Subjective evaluation. Quantitative comparisons in terms of
PSNR are often not the best indicators of visual quality. To fur-
ther validate our claims, we performed subjective evaluations with
the goal of determining if the reconstructions were distinguishable
from the original images. We performed a visual perception study
using a group of 13 test-subjects. We would show the subjects a
pair of images — one original and reconstructed — and note the
subjects preference of the higher quality image or if there was no
preference at all (see Figure 15(a)). The subjects had no restric-
tions on the amount of time required to make their choice as well as
had the ability to zoom-in over different regions for a closer look.
Each subject had to complete 30 evaluations and on an average, the
amount of time taken to complete them was 5 minutes. Further,
to establish reliable controls, out of the total of 13 × 30 = 390
image-pairs instances, we randomly placed 69 control evaluations
where both images were the same. Out of these, in 60/69 instances
the users marked no preference — thereby lending remarkable sig-
nificance to our evaluations. Figure 15)(b) shows the histogram of
answers obtained. In a majority of instances (51%), the subjects
had no preference between the two images. In about a third of the
instances, the subjects preferred the original image and preferred
the reconstructed image in a sixth of the instances. Overall this in-
dicates that in a significant percentage of instances (close to 66%)
the subjects either preferred our reconstruction or had no particular
preference for the original and even when they had a preference the
preference was marginal.



Figure 7: Focal stack reconstruction of the “Animal” dataset. We reconstruct a focal stack of 45 images from just 8 images. (a) An image
from the reconstructed focus stack. We obtain a reconstruction SNR of 25.8 dB. (b) Reconstructed intensity profiles for points marked in (a).
(c, d) Focus stack reconstructions for the insets in (a). In each case, we show two input images at the top and show recovered intermediate
focus planes. The two regions were selected so as to showcase the ability of our algorithm to hypothesize the correct focus plane as well as
the bokeh of the camera accurately. (c)“leaf 1” is in focus in the first image and “leaf 3” in focus in the second image (at focal setting 37),
whereas “leaf 2” is not in focus in either. In the reconstructed intermediate images, we can clearly see that the blur in ”leaf 1” increases
linearly, whereas that in “leaf 3” decreases linearly. Also “leaf 2”, which was blurred in both the input images, is sharper in the intermediate
images. (d) Blur on “zebra” decreases linearly.

Figure 8: Focal stack reconstruction of “Liquid” dataset. We reconstruct a focal stack of 45 images from 8 images using our algorithm.
(a) An image from the reconstructed focal stack. We obtain a reconstruction SNR of 32 dB. (b) Intensity profile (pixel value vs. focus) for
various scene points. (c, d) Reconstructed images between selected focal setting. (c) Note that the blur reduces linearly in the orange. Also,
note that our algorithm handles transparent object such as glass quite well. (d) We are able to handle specularity in “grape 1” and the blur
reduces linearly in “grape 2”.

6.3 Confocal stereo

Confocal stereo is a powerful per-pixel depth estimation algorithm
that uses properties of the AFI images observed at a pixel. How-
ever, this requires capturing the entire focus-aperture stack that typ-

ically has several hundreds to thousands of images. A key benefit
of our compressive epsilon photography framework is that we can
obtain this space of images from very few images. Figure 16 shows
depth estimates obtained from 16 input images. Our depth esti-
mates are comparable to those obtained by applying the confocal



Figure 9: Depth map and all focus image from reconstructed “Chess” dataset. We reconstruct a focal stack of 45 images from 8 images
using our algorithm and cubic spline interpolation. We then compute the depth maps and all focus images from these reconstructed stacks
using a commercially available software Helicon soft. The depth map and all focus image obtained using our reconstructed stack are very
close to the depth map and all focus image computed from the ground truth 45 images focal stack. The depth map obtained using spline
interpolated focal stack is relatively poor. The all focus image obtained from spline interpolation show lots of artifacts.

Figure 11: Focus stack reconstructions. We show select patches from the reconstructed focus-aperture stack. (a) The gray circles corre-
spond to the focus-aperture combinations at which the 16 input images were obtained. (b, c) Sample images from reconstructed dataset. (d)
We show the reconstructed patches (R) at locations which are far away from the sampled focus-aperture input images.(see colored squares in
(a)). A comparison with patches obtained from the ground truth (GT) data reveals that our reconstruction quality is high.

stereo algorithm to the entire focus-aperture stack. Further, look-
ing at the histogram of depth errors over three different datasets,
we note that our compressive epsilon photography approach starts
producing competitive depth estimates from as little as 8 input im-
ages — a dramatic improvement over the original algorithm which
required 793 images.

7 Conclusion and discussions

In this paper, we envision a framework for reconstructing the entire
space of photographs that can be captured by a camera from just a
few carefully selected images. Our framework enables an unprece-
dented level of freedom and flexibility in post-capture processing
without the resolution limitations of light-field cameras. The two-
key ideas underlying our approach are the use of per-pixel model-
ing of intensity profiles and the use of Gaussian Mixture Models
for capturing redundancies observed in epsilon photography stacks.
Exploiting both of these, we show that we can reconstruct a pho-

tograph stack of thousands of images from just a few images. Fur-
ther, applications that rely on focus-aperture stacks such as confo-
cal stereo are enabled by collecting just a few images as opposed to
hundreds to thousands of images.

Limitations. A key limitation of our algorithm, and an avenue for
future work, is to account for scene motion and dynamic range. The
results presented in this paper are applicable only for static or slow-
moving scenes. However, our compressive framework enables re-
construction of the focus-aperture stack from as little as 8− 16 im-
ages — which can be captured in rapid succession using the burst
mode of the camera. By accounting for scene motion using op-
tical flow-based registration, one could extend our techniques to
dynamic scenes as well. Tackling dynamic range is another key av-
enue for future work. Our method is general enough to encompass
both noise models inherent to HDR imaging as well as account-
ing for changes in ISO. In addition to these, clever strategies for
sampling a large depth range without significantly increasing the



Figure 14: Focus-aperture stack reconstruction for outdoor ”tennis” dataset. This figure shows the reconstruction results of a tennis
racquet placed outdoors at 24 uniformly sampled focus-aperture combinations. 16 input images were used for reconstruction. Notice how
the depth of field increases as one moves from F/2.2 to F/10. The blur too is modeled well, as can be seen for the images reconstructed at the
largest aperture (F/2.2). Also note the change in focus as the focus plane (fp) varies from near-end to far-end with respect to the camera as
one moves from left (fp 7) to right (fp 37).

Figure 10: Reconstructed AFI images. (a) We plot the re-
construction accuracy of the focus-aperture stacks measured with
PSNR as a function of number of input images. The reconstruc-
tion performance improves significantly as one moves from 4 input
images to 16 input images for complex scenes with high texture con-
tent and intricate occlusions. For less complex scenes such as the
chess dataset, we can reliably reconstruct the focus-aperture stack
using just 8 images. (c) We show a set of AFI images obtained from
the reconstructed focus-aperture stack for interesting points such as
depth edges, texture edges, and flat surfaces corresponding to the
points shown in (b). Note that the stars denote the computed depth/
focal plane for the point under consideration.

per-pixel feature dimensionality and the associated training data re-
quirements is an interesting avenue for future work.
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Figure 13: Focus-aperture stack reconstruction for “glassball”
and “chess” datasets. a) shows 2 reconstructed focal-stacks for a
fixed small aperture of F/2.2. One can clearly see the accurately
modeled blurring effect as one moves from focal plane 3 (fp3) to
focal plane 42 (fp42). b) Reconstructed aperture stacks for a fixed
focal plane. As the aperture size increases from left to right, the
increase in depth of field becomes apparent.

Figure 15: Subjective evaluation. (a) We showed pairs of images
– one original and one reconstructed — to 13 subjects and asked
them to either pick a perceptually better image or to mark no prefer-
ence between the two. Each subject was asked to evaluate 30 image
pairs with no constraints on time for finishing the tasks. (b) In 51%
percentage of instances, the subjects had no preference between the
two images. This indicates both the high quality of our reconstruc-
tions and our ability to avoid perceptually glaring artifacts.
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