
Chapter 1

1.1 Importance of mobile carriers

Any performing system has to carry some form of energy from one spatial
point to other. For this purpose, mobile members are needed in the system.
It is electrical energy that is being carried inside the semiconductor system.
Also heat energy can be carried by mobile carriers. If no mobile carrier is
available inside the solid state semiconductor, it would not be useful as far as
the system performance is concerned. It is very obvious that fluid can flow
and while flowing, it can carry some energy. In contrast, it is amazing to
realize the fact that there are some mobile members inside a solid like metal
or semiconductor to conduct electrical or heat energy!

In metals, carriers are electrons. In semiconductors, two types of carriers
are there, electrons and holes. It is very important to control the numbers
and properties of these carriers to make the system performing, since they
are the ones to carry energy. Importance of the mobile carriers can be felt
from Table 1.1 that shows and inverse relationship between the density of
mobile electrons in a system and its electrical resistivity. It is the semicon-
ductor that shows highest amount of flexibility in the electrical resistivity
(or its inverse, electrical conductivity). The controllability of the resistivity
of semiconductor materials using today’s technology drives the success in in-
tegrated circuit (IC) technology industries. Other than the structure of the
device, it is the numbers and properties of mobile carriers that determine the
system performance.
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Table 1.1: Conduction or mobile electron density and resistivity for various
kinds of material systems.

Material Type Mobile Electron Density Resistivity
(examples) (cm−3) (Ω − cm)

Superconductor 1023 0
(Sn, Pb at 0.1K to 4K)

Good Conductor 1022 − 1023 10−6 − 10−5

(Metals: K, Na, Cu, Au)
Conductor 1017 − 1022 10−5 − 10−2

(Semi-metals: As, B, Graphite)
Semiconductor 106 − 1017 10−2 − 109

(Ge, Si, GaAs, GaP, InP, etc.)
Semi-insulator 101 − 105 1010 − 1014

(Amorphous Si)
Insulator 1 - 10 1014 − 1022

(SiO2, Si3N4, etc.)

1.2 Means of obtaining mobile carriers

If some sort of energy, such as heat or light, is supplied from outside, a
semiconductor generates electrons and holes, the mobile carriers of the sys-
tem. Essentially we learn from quantum mechanics that the electrons can
stay only in some energy levels. Precisely, these energy levels are discrete
in nature, and the electrons tend to stay in the lower most level if it is not
occupied. With the supply of energy from outside, the electrons gain energy
and tend to move towards higher energy levels and become mobile since they
are not tightly bound by the atoms at higher energy levels. However, the
most efficient way to obtain mobile carriers within a semiconductor is by
doping which we shall learn later.

1.3 Towards estimating the number of mobile

carriers

Let’s discuss the procedure for estimating the number of electrons. Essen-
tially we estimate the carrier density instead of estimating the total carrier
number. Since electrons can stay in certain energy levels, it makes sense to
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carry out the calculation in energy domain. Intuitively, the electrons density
can be figured out if we can estimate the available number of energy levels
within a unit volume and multiply it with a factor that is a measure of occu-
pation of those energy levels by electrons. Note that the availability of the
energy levels does not ensure their occupancy by electrons. Calculation of the
available number of energy levels per unit volume requires the knowledge of
how the energy levels are distributed in energy space, that is to say, whether
the density of energy levels is uniform or not. If the density of available
energy levels is uniform, the total available energy levels can be obtained by
multiplying the level density with the energy span of interest. However, in
practice for 3D crystal system we find that both density of energy levels or
energy states and occupation factor are nonlinear functions of energy itself.
Hence, we can get the density of mobile electrons as

n =

∫ E2

E1

D(E)f(E)dE (1.1)

where D(E) is the density of energy states (DOS) in per eV per cm3 and
f(E) is the occupation factor. The lower limit in (1.1), i.e., E1 signifies a
minimum amount of energy required to obtain a mobile electron. Note that
we are not interested to obtain the density of total electrons available in the
crystal system, but in the density of mobile electrons only. To become mobile,
it has to gain a minimum amount of energy (which is E1) over and above
which the electrons can gain kinetic energy. The upper limit is the maximum
energy that the electrons can obtain being within the semiconductor. Before
we discuss on f(E), we need to discuss more on D(E). To understand and
obtain an expression for D(E), we need to look into a crystal system, at
least, to some extent.

1.4 Crystal and lattice

Figs. 1.1 (a) and (b) show a 1D crystal and the corresponding 1D lattice with
lattice constant a, respectively. A lattice is a mathematical abstraction of
the corresponding crystal system. A lattice point represents the set of atomic
arrangement that gets repeated in the corresponding crystal system. The 1D
lattice and the corresponding crystal systems are extended from −∞ to +∞
to comply with translational symmetry. A 2D or 3D lattice and the corre-
sponding crystal system also comprise regular arrangement and are extended



8 CHAPTER 1. MOBILE CARRIERS

(a)

(b)

(c)

2π/a

a

Figure 1.1: (a) One dimensional real crystal where a group of three atoms are
repeating in x-direction from −∞ to +∞ (although only five repeatations are
shown), (b) Real space lattice of the 1D crystal, (c) Corresponding reciprocal
or Fourier space lattice.

infinitely, in principle, to comply with translational symmetry. Let’s again
concentrate on 1D lattice with lattice constant a. Following translational
symmetry, the spatial distribution of lattice point can be expressed as

f(x) = f(x± na) = Σ+∞

n=−∞
Fne

in(2π/a)x. (1.2)

Fig. 1.1(c) shows the distribution of the real space point of Fig. 1.1(b) in
Fourier space. Here the spacing between the two points is 2π/a. We obtain
another lattice in Fourier space or k-space once we express real space lattice
function f(x) in terms of Fourier series in (1.2). Similarly Figs. 1.2(a) and
(b) show the real space 2D lattice and the corresponding 2D Fourier or k-
space lattice, respectively. The lattice spacing in x-direction is a and in y-
direction is b, which in Fourier space become 2π/a in kx-direction and 2π/b
in ky-direction. Similarly one can imagine that a 3D lattice having lattice
spacing a, b, c in x, y, z-directions, respectively, will have a Fourier space 2D
lattice with lattice spacing 2π/a, 2π/b, and 2π/c in kx, ky, and kz directions,
respectively. The Fourier space lattice is popularly known as reciprocal space
lattice. If we consider the mobile electrons to be weakly bound and nearly
free, up to certain values for kinetic energy, we can assume them to have a
wave function like a plane wave

ψ = ψ0e
i(ωt+kx) (1.3)

where ω, t, k and x are angular frequency, time, wave vector and real space
respectively. Note that ω and t are Fourier pair and similarly k and x. Now
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Figure 1.2: (a) Two dimensional real space lattice of a 2D crystal, (b) Cor-
responding reciprocal or Fourier space lattice.

according to quantum mechanics, momentum is an operator given by

p =
h̄

i

∂

∂x
(1.4)

in 1D. If we apply the operator (1.4) on to the wave function (1.3), we obtain

h̄

i

∂ψ

∂x
= pψ = h̄kψ (1.5)

yielding electron momentum

p = h̄k = mv (1.6)

where m and v are mass and velocity of electron. If E1 is potential energy
for electron and the energy excess to E1 generates its kinetic energy, then
total energy can be written as

E = E1 +
1

2
mv2 = E1 +

h̄2k2

2m
. (1.7)
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Strictly speaking, the relation in (1.7) is valid for free electrons. Although
electrons are not absolutely free in semiconductors, we can assume them to
be nearly free within the bulk of the semiconductor crystal and therefore,
we find (1.7) to predict fairly well the actual energy of electrons within the
semiconductor if it is only few kBT energy levels higher than E1 (with kB as
Boltzmann constant and T as temperature in Kelvin). At room temperature,
kBT = 0.0259eV . Since most of the mobile electrons remain within a few
kBT energy levels from E1, (1.7) is very much useful. To describe the number
of mobile carriers, it is imperative that one requires to count the available
energy levels at first. If we integrate the density of states, D(E) appearing
in (1.1) without the factor, f(E), we can obtain the total number of energy
levels available within E1 and E2. Let’s denote this variable as NV (E). The
suffix ′V ′ indicates that it is a measure per unit volume. Therefore,

NV (E) =

∫ E2

E1

D(E)dE (1.8)

or,

D(E) =
dNV (E)

dE
. (1.9)

It is clear that to obtain an expression of D(E), we require an expression for
NV (E). Since E and k are related by (1.7), we can start for obtaining an
expression for NV (k) and then convert it into NV (E) using (1.7). To obtain
an expression of NV (k), i.e., the number of k-states per unit volume within
certain energy range, we need to understand periodic boundary condition.

1.5 Periodic boundary condition

Fig. 1.3(a) shows a lattice specimen of length L with (N + 1) lattice points.
Periodic boundary condition implies that the 1st point is equivalent with the
(N + 1)th point. Such a condition ensures the translational symmetry (1.2)
even for the finite lattice system. If we assume a time-independent version
of (1.3), i.e., ψ(kx), as the electron wave function within the lattice, it must
obey the periodic boundary condition, i.e.,

ψ(kx)|x=0 = ψ(kx)|x=L. (1.10)

Figs. 1.3(b) and (c) show the possible wavefunctions that satisfy (1.10). It is
clear that if the wave function is zero at x = 0 and x = L, then it takes the



1.6. DENSITY OF STATES 11

form of sin(kx) (Fig. 1.3(b)) and if it is non-zero at these points, it takes the
form of cos(kx) (Fig. 1.3(c)). Now if it has to satisfy (1.10) simultaneously
for sin(kx) and cos(kx), the following relation must hold:

knL = n2π (1.11)

for any integer value of n and kn signifies various discrete values of k (de-
pending on the value of n) that are allowed in the lattice system. It means
that only some discrete k values are allowed for electrons staying within the
lattice system. Let’s now try to count the discrete k-states. If a is the lattice
constant, L = Na. Therefore, k1 = 2π

Na
, k2 = 2 2π

Na
, .... and kN = 2π

a
. Again

kN+1 = 2π
a

+k1 and with respect to the sine or cosine function, kN+1 appears
to be equivalent with k1 because

sin(kN+1xm) = sin(
2π

a
ma + k1ma) = sin(k1xm),

cos(kN+1xm) = cos(
2π

a
ma + k1ma) = cos(k1xm). (1.12)

Similarly kN+2 is equivalent with k2 and so on. Therefore we can limit our
investigation for k-states from 0 to 2π

a
since the k-states are repeating after

that. The spacing between two k-states appears to be ∆k = k2 − k1 =
k3 − k2 = ... = 2π

L
. If the specimen size is quite large, ∆k reduces and it

reduces to zero if L tends to infinity. Therefore, finite size of the lattice
system yields discreteness in the available k values. It would be continuous
if the size of the lattice is infinite. Since the lattice points are spaced by a,
the k-states are limited within (0, 2π

a
) range. Therefore, discreteness in the

real space lattice yields a finite size in the reciprocal k-space.

1.6 Density of states

Now if we define N(kr) as the number of states having k-values less than
equal to |kr|, the volume of interest in k-space must be a sphere in 3D case
with kr as the radius of the sphere. In 2D case, it would be a circle with kr

as the radius of the circle and in 1D case, it would be a line of length 2kr,
with +kr in +ve direction and −kr in −ve direction. In 1D case, we obtained
∆k = 2π

L
which signifies that if we move in k-space by an amount of 2π

L
, we

encounter only one allowed k-state. Similarly in a rectangular 2D specimen
of size LxLy, if we cover an area of 2π2π

LxLy

, we shall encounter only one allowed
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Figure 1.3: (a) One dimensional finite lattice with N+1 lattice points and
lattice constant a. With periodic boundary condition, 1st lattice is equivalent
with (N + 1)th lattice point and the length of the specimen, L = Na. (b)
sin(kx) like wave functions for electrons within the lattice obeying (1.10). (c)
cos(kx) like wave functions for electrons within the lattice obeying (1.10).

k-state. Finally in a 3D lattice specimen having a size of LxLyLz, one has to
cover a volume of 2π2π2π

LxLyLz

to encounter one allowed k-state. Therefore, if one

covers unit k-volume in 3D lattice, an amount of LxLyLz

8π3 number of k-states
will be encountered. Within a spherical volume of radius kr, therefore, the
total number of k-states will be 4

3
πk3

r
LxLyLz

8π3 . So following the definition of
N(kr), one writes

N(kr) =
4

3
πk3

r

LxLyLz

8π3
=
LxLyLz

6π2
k3

r . (1.13)
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Using (1.7), one can easily find this number in terms of energy, E, i.e., the
number of energy states having energy less than equal to E −E1, as

N(E − E1) =
LxLyLz

6π2h̄3 {2m(E −E1)}
3/2. (1.14)

Therefore, the corresponding value per unit volume of the lattice specimen
appears to be

NV (E −E1) =
1

6π2h̄3{2m(E −E1)}
3/2. (1.15)

Following (1.9), the density of energy states appears to be

D(E − E1) = 2
dNV (E − E1)

dE
=

m

π2h̄3

√

2m(E − E1) (1.16)

where a factor of 2 is multiplied to consider the spin degeneracy.

1.7 Energy bands and bandgap

Fig. 1.4(a) shows a band structure of a semiconductor for the energy levels
of its valence electrons. The upper branch follows the trend of (1.7) if the
origin is shifted to a k value where the E-k diagram shows a minima. The
lower branch also follows (1.7), but in an inverted manner. Note that (1.7) is
useful here to predict the electron’s energy for limited k-values which are not
too high. More precisely, such a pair of energy branches at different k-values
are obtained as the solution for energy levels from Schrodinger’s equation
if Bloch wave function is used. The Bloch wave function takes the form
of (1.3) with a ψ0 taking the periodicity of the lattice into consideration.
Here we need not bother on how such a solution is obtained for different
semiconductor. Analysis of such a solution is more important here.

From (1.7), one can obtain a relation for electron mass as

m∗ =
h̄

d2E
dk2

. (1.17)

Here instead of mass m, we have equated the right hand side with m∗, which
is referred to as effective mass of electron. As the curvature d2E

dk2 increases,
effective mass reduces and this way the effective mass of mobile electrons
in the upper branch of Fig. 1.4(a) can vary from free electron mass, m (=
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Figure 1.4: (a) Energy (E) versus wave vector (k) relationship in a semicon-
ductor crystal with lattice spacing a. The dotted line in the upper branch
shows the limitation and suitability of (1.7) to capture the actual E-k be-
havior. (b) Formation of the band structure when the lattice spacing is
reduced towards left. (c) Positional energy band diagram (E-x) for the same
semiconductor crystal with lattice constant, a.

9.1.10−31kg). Sometimes it is more than m (m∗ = 1.1m), sometimes it is less
(m∗ = 0.25m). Now if we consider the lower branch in Fig. 1.4(a), one sees
the curvature to be negative leading to a negative effective mass! Instead of
assigning a negative mass to a negative charge (electron), one can assume
this energy branch for a positive charge with positive effective mass, energy of
which increases downward in Fig. 1.4(a). Such a positive charge (magnitude
is same as that of electron) with positive effective mass is a hole. Note that
electron (negative charge) energy increases in upward direction in Fig. 1.4(a)
whereas hole (positive charge) energy increases in downward direction. The
upper branch corresponds to conduction band and the lower branch is called
valence band. Minimum separation between the two branches is known as
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energy gap or bandgap.
In a crystal with N lattice points (assume large value for N), if we grad-

ually reduce the lattice constant, the valence electrons energy levels (ns and
np) are broadened into energy bands as shown in Fig. 1.4(b). This formation
of energy bands is due to many energy levels of many atoms comprising the
N lattice points. Energy levels of each atom are discrete as long as their
in-between spacings are large. As the spacing reduces, energy lines of similar
levels adjust themselves within a very small space and form energy bands.
At certain energy spacing (b in Fig. 1.4(b)), the two broadened energy bands
may merge depending upon the nature of the crystal or lattice. If N lattice
points are made of N atoms, the total energy states corresponding to the
valence energy levels are 2N + 6N = 8N . However, total number of valence
electrons are 2N + 2N = 4N . Therefore, 4N empty states will be there.
At a particular lattice constant (a in Fig. 1.4(b)), the two energy bands are
separated by a finite energy gap, known as bandgap, Eg. The bottom energy
band (known as valence band) have 4N energy levels and the upper band
(called as conduction band) have 4N levels. Fig. 1.4(c) shows the position
dependent energy band (E-x) diagram for the particular semiconductor with
lattice constant a. Note that Fig. 1.4(a) depicts the same energy band dia-
gram with respect to the wave vector (E-k diagram) for the same real-space
lattice having lattice constant, a. Bottom of the conduction band is written
as Ec, top of the valence band as Ev, and energy bandgap, Eg = Ec −Ev.

Lower the energy gap of a system, larger the mobile carriers at a given
temperature (since bound electrons in valence band can easily move to the
conduction band), hence more electrical conductivity as per Table 1.1. For
metals, there is no energy gap whereas for insulators, the energy gap is too
high (around 10eV ). A moderate value of energy gap in semiconductors
(around 0.5 to 3eV ) opens up the possibility to use them as near-metals or
as near-insulators at our will by changing the number of mobile carriers in
the system using certain technology and operating conditions.




